All Downloads are FREE. Search and download functionalities are using the official Maven repository.

uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient.MleLvmGradientProcedure6 Maven / Gradle / Ivy

Go to download

Genome Damage and Stability Centre SMLM Package Software for single molecule localisation microscopy (SMLM)

The newest version!
/*-
 * #%L
 * Genome Damage and Stability Centre SMLM Package
 *
 * Software for single molecule localisation microscopy (SMLM)
 * %%
 * Copyright (C) 2011 - 2023 Alex Herbert
 * %%
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program.  If not, see
 * .
 * #L%
 */

package uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient;

import uk.ac.sussex.gdsc.core.utils.ValidationUtils;
import uk.ac.sussex.gdsc.smlm.function.Gradient1Function;

/**
 * Calculates the scaled Hessian matrix (the square matrix of second-order partial derivatives of a
 * function) and the scaled gradient vector of the function's partial first derivatives with respect
 * to the parameters. This is used within the Levenberg-Marquardt method to fit a nonlinear model
 * with coefficients (a) for a set of data points (x, y).
 *
 * 

This procedure computes a modified Chi-squared expression to perform Maximum Likelihood * Estimation assuming Poisson model. See Laurence & Chromy (2010) Efficient maximum likelihood * estimator. Nature Methods 7, 338-339. The input data must be Poisson distributed for this to be * relevant. */ public class MleLvmGradientProcedure6 extends MleLvmGradientProcedure { /** * Instantiates a new procedure. * * @param y Data to fit (must be positive) * @param func Gradient function */ public MleLvmGradientProcedure6(final double[] y, final Gradient1Function func) { super(y, func); ValidationUtils.checkArgument(numberOfGradients == 6, "Function must compute 6 gradients"); } @Override public void execute(double fi, double[] dfiDa) { ++yi; if (fi > 0) { final double xi = y[yi]; // We assume y[i] is positive but must handle zero if (xi > 0) { value += (fi - xi - xi * Math.log(fi / xi)); final double xi_fi2 = xi / fi / fi; final double e = 1 - (xi / fi); beta[0] -= e * dfiDa[0]; beta[1] -= e * dfiDa[1]; beta[2] -= e * dfiDa[2]; beta[3] -= e * dfiDa[3]; beta[4] -= e * dfiDa[4]; beta[5] -= e * dfiDa[5]; alpha[0] += dfiDa[0] * xi_fi2 * dfiDa[0]; double wgt; wgt = dfiDa[1] * xi_fi2; alpha[1] += wgt * dfiDa[0]; alpha[2] += wgt * dfiDa[1]; wgt = dfiDa[2] * xi_fi2; alpha[3] += wgt * dfiDa[0]; alpha[4] += wgt * dfiDa[1]; alpha[5] += wgt * dfiDa[2]; wgt = dfiDa[3] * xi_fi2; alpha[6] += wgt * dfiDa[0]; alpha[7] += wgt * dfiDa[1]; alpha[8] += wgt * dfiDa[2]; alpha[9] += wgt * dfiDa[3]; wgt = dfiDa[4] * xi_fi2; alpha[10] += wgt * dfiDa[0]; alpha[11] += wgt * dfiDa[1]; alpha[12] += wgt * dfiDa[2]; alpha[13] += wgt * dfiDa[3]; alpha[14] += wgt * dfiDa[4]; wgt = dfiDa[5] * xi_fi2; alpha[15] += wgt * dfiDa[0]; alpha[16] += wgt * dfiDa[1]; alpha[17] += wgt * dfiDa[2]; alpha[18] += wgt * dfiDa[3]; alpha[19] += wgt * dfiDa[4]; alpha[20] += wgt * dfiDa[5]; } else { value += fi; beta[0] -= dfiDa[0]; beta[1] -= dfiDa[1]; beta[2] -= dfiDa[2]; beta[3] -= dfiDa[3]; beta[4] -= dfiDa[4]; beta[5] -= dfiDa[5]; } } } @Override protected void initialiseGradient() { GradientProcedureHelper.initialiseWorkingMatrix6(alpha); beta[0] = 0; beta[1] = 0; beta[2] = 0; beta[3] = 0; beta[4] = 0; beta[5] = 0; } @Override public void getAlphaMatrix(double[][] alpha) { GradientProcedureHelper.getMatrix6(this.alpha, alpha); } @Override public void getAlphaLinear(double[] alpha) { GradientProcedureHelper.getMatrix6(this.alpha, alpha); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy