All Downloads are FREE. Search and download functionalities are using the official Maven repository.

uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient.WPoissonGradientProcedure Maven / Gradle / Ivy

Go to download

Genome Damage and Stability Centre SMLM Package Software for single molecule localisation microscopy (SMLM)

The newest version!
/*-
 * #%L
 * Genome Damage and Stability Centre SMLM Package
 *
 * Software for single molecule localisation microscopy (SMLM)
 * %%
 * Copyright (C) 2011 - 2023 Alex Herbert
 * %%
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program.  If not, see
 * .
 * #L%
 */

package uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient;

import java.util.Arrays;
import uk.ac.sussex.gdsc.smlm.function.Gradient1Function;
import uk.ac.sussex.gdsc.smlm.function.Gradient1Procedure;

/**
 * Calculates the Fisher information matrix for a Poisson process.
 *
 * 

This procedure is based on computation of a modified Chi-squared expression to perform * Weighted Least Squares Estimation assuming a Poisson model with a Gaussian noise component. The * weight per observation is equal to 1/[variance + max(y, 0) + 1]. * *

See Lin, et al (2017) Algorithmic corrections for localization microscopy with sCMOS cameras - * characterisation of a computationally efficient localization approach. Optical Express 25, Issue * 10, pp 11701-11716. */ public class WPoissonGradientProcedure implements Gradient1Procedure { /** The weights. */ protected final double[] wgt; /** The function. */ protected final Gradient1Function func; /** * The number of gradients. */ public final int numberOfGradients; /** Working space for the Fisher information matrix (size n * (n + 1) / 2). */ protected double[] data; /** The y index counter. */ protected int yi; /** * Instantiates a new procedure. * * @param y Data to fit * @param var the base variance of each observation (must be positive) * @param func Gradient function */ public WPoissonGradientProcedure(final double[] y, final double[] var, final Gradient1Function func) { this.func = func; this.numberOfGradients = func.getNumberOfGradients(); final int n = y.length; wgt = new double[n]; // From Lin, et al (2017): // Total noise = variance + max(di, 0) + 1 if (var != null && var.length == n) { // Include the variance in the weight. Assume variance is positive. for (int i = 0; i < n; i++) { wgt[i] = (y[i] > 0) ? 1.0 / (var[i] + y[i] + 1.0) : 1.0 / (var[i] + 1.0); } } else { for (int i = 0; i < n; i++) { wgt[i] = (y[i] > 0) ? 1.0 / (y[i] + 1.0) : 1.0; } } } /** * Compute the Fisher information matrix. * *

   * Iab = E [ ( d ln(L(x|p)) / da ) * ( d ln(L(x|p)) / db ) ]
   * p = parameters
   * x = observed values
   * L(x|p) = likelihood of X given p
   * E = expected value
   * 
* *

Note that this is only a true Fisher information matrix if the function returns the expected * value for a Poisson process (see Smith, et al (2010)). In this case the equation reduces to: * *

   * Iab = sum(i) (dYi da) * (dYi db) / Yi
   * 
* *

In this case Yi refers to the expected value at observation i. This expression was updated * (Lin, et al (2017)) to use Yi as the observed value at observation i (Oi). To increase * stability for zero or small Oi a Baysian prior is added using max(0, Oi) + 1. To account for * Gaussian noise per observation using the variance (vari) the weights can be combined resulting * in: * *

   * Iab = sum(i) (dYi da) * (dYi db) / (max(0, Oi) + 1 + vari)
   * 
* *

See Smith et al, (2010). Fast, single-molecule localisation that achieves theoretically * minimum uncertainty. Nature Methods 7, 373-375 (supplementary note), Eq. 9. * *

See Lin, et al (2017) Algorithmic corrections for localization microscopy with sCMOS cameras * - characterisation of a computationally efficient localization approach. Optical Express 25, * Issue 10, pp 11701-11716. * *

A call to {@link #isNaNGradients()} will indicate if the gradients were invalid. * * @param a Set of coefficients for the function (if null then the function must be * pre-initialised) */ public void computeFisherInformation(final double[] a) { yi = 0; if (data == null) { data = new double[numberOfGradients * (numberOfGradients + 1) / 2]; } else { initialiseWorkingMatrix(); } if (a != null) { func.initialise1(a); } func.forEach(this); } /** * Initialise for the computation of the Fisher information matrix. Zero the working matrix. */ protected void initialiseWorkingMatrix() { Arrays.fill(data, 0.0); } @Override public void execute(double value, double[] dyDa) { // Note: Ignore the value final double weight = this.wgt[yi++]; for (int j = 0, i = 0; j < numberOfGradients; j++) { final double dw = dyDa[j] * weight; for (int k = 0; k <= j; k++) { data[i++] += dw * dyDa[k]; } } } /** * Check the gradients are NaN. * * @return true, if NaN */ protected boolean checkGradients() { for (int i = 0, len = data.length; i < len; i++) { if (Double.isNaN(data[i])) { return true; } } return false; } /** * Get the scaled Fisher Information matrix (size n*n). * * @return the alpha */ public double[][] getMatrix() { final double[][] a = new double[numberOfGradients][numberOfGradients]; getMatrix(a); return a; } /** * Get the scaled Fisher Information matrix (size n*n) into the provided storage. * * @param matrix the matrix */ public void getMatrix(double[][] matrix) { GradientProcedureHelper.getMatrix(data, matrix, numberOfGradients); } /** * Get the scaled Fisher Information matrix (size n*n). * * @return the alpha */ public double[] getLinear() { final double[] a = new double[numberOfGradients * numberOfGradients]; getLinear(a); return a; } /** * Get the scaled Fisher Information matrix (size n*n) into the provided storage. * * @param matrix the matrix */ public void getLinear(double[] matrix) { GradientProcedureHelper.getMatrix(data, matrix, numberOfGradients); } /** * Checks if is na N gradients. * * @return True if the last calculation produced gradients with NaN values. */ public boolean isNaNGradients() { return checkGradients(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy