uk.ac.sussex.gdsc.smlm.function.NonLinearFunctionWrapper Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of gdsc-smlm Show documentation
Show all versions of gdsc-smlm Show documentation
Genome Damage and Stability Centre SMLM Package
Software for single molecule localisation microscopy (SMLM)
The newest version!
/*-
* #%L
* Genome Damage and Stability Centre SMLM Package
*
* Software for single molecule localisation microscopy (SMLM)
* %%
* Copyright (C) 2011 - 2023 Alex Herbert
* %%
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program. If not, see
* .
* #L%
*/
package uk.ac.sussex.gdsc.smlm.function;
import org.apache.commons.lang3.tuple.Pair;
import uk.ac.sussex.gdsc.core.utils.SimpleArrayUtils;
/**
* Wrap the NonLinearFunction to remove the parameters that are fixed from the evaluation methods.
*/
public class NonLinearFunctionWrapper implements ExtendedNonLinearFunction {
private final NonLinearFunction fun;
private final double[] params;
private final int dataSize;
private final int[] gradientIndices;
/**
* Create a new instance using the full set of parameters for the function and the number of
* points the function evaluates. The parameters that are not within the function gradient indices
* array will be fixed.
*
* @param fun The function
* @param params The parameters
* @param dataSize The number of data points to evaluate
*/
public NonLinearFunctionWrapper(NonLinearFunction fun, double[] params, int dataSize) {
this.fun = fun;
this.params = params.clone();
this.dataSize = dataSize;
// This wrapper will evaluate all the indices that are not fixed
gradientIndices = SimpleArrayUtils.natural(fun.getNumberOfGradients());
}
/**
* Set the predictor coefficients for the function that are not fixed (i.e. those corresponding to
* the gradient indices in the wrapped function). The fixed coefficients are set in the
* constructor.
*/
@Override
public void initialise(double[] variables) {
final int[] gi = fun.gradientIndices();
for (int i = 0; i < gi.length; i++) {
params[gi[i]] = variables[i];
}
fun.initialise(params);
}
@Override
public int[] gradientIndices() {
return gradientIndices;
}
@Override
public int getNumberOfGradients() {
return gradientIndices.length;
}
@Override
public double eval(int x, double[] dyda) {
return fun.eval(x, dyda);
}
@Override
public double eval(int x) {
return fun.eval(x);
}
@Override
public double evalw(int x, double[] dyda, double[] weight) {
return fun.evalw(x, dyda, weight);
}
@Override
public double evalw(int x, double[] weight) {
return fun.eval(x, weight);
}
@Override
public boolean canComputeWeights() {
return fun.canComputeWeights();
}
@Override
public double[] computeValues(double[] variables) {
initialise(variables);
final double[] values = new double[dataSize];
for (int i = 0; i < values.length; i++) {
// Assume linear X from 0..N
values[i] = fun.eval(i);
}
return values;
}
@Override
public double[][] computeJacobian(double[] variables) {
initialise(variables);
final double[][] jacobian = new double[dataSize][];
for (int i = 0; i < dataSize; ++i) {
// Assume linear X from 0..N
final double[] dyda = new double[variables.length];
fun.eval(i, dyda);
jacobian[i] = dyda;
}
return jacobian;
}
@Override
public boolean canComputeValuesAndJacobian() {
return true;
}
@Override
public Pair computeValuesAndJacobian(double[] variables) {
initialise(variables);
final double[][] jacobian = new double[dataSize][];
final double[] values = new double[dataSize];
for (int i = 0; i < dataSize; ++i) {
// Assume linear X from 0..N
final double[] dyda = new double[variables.length];
values[i] = fun.eval(i, dyda);
jacobian[i] = dyda;
}
return Pair.of(values, jacobian);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy