All Downloads are FREE. Search and download functionalities are using the official Maven repository.

uk.ac.sussex.gdsc.smlm.function.PoissonGaussianLikelihoodWrapper Maven / Gradle / Ivy

Go to download

Genome Damage and Stability Centre SMLM Package Software for single molecule localisation microscopy (SMLM)

The newest version!
/*-
 * #%L
 * Genome Damage and Stability Centre SMLM Package
 *
 * Software for single molecule localisation microscopy (SMLM)
 * %%
 * Copyright (C) 2011 - 2023 Alex Herbert
 * %%
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program.  If not, see
 * .
 * #L%
 */

package uk.ac.sussex.gdsc.smlm.function;

/**
 * This is a wrapper for any function to compute the negative log-likelihood assuming a
 * Poisson-Gaussian distribution.
 *
 * 

For each observed value the log-likelihood is computed from the Poisson-Gaussian distribution * (a Poisson convolved with a Gaussian). The mean of the Poisson distribution is set using the * expected value generated by the provided function. The standard deviation of the Gaussian is * fixed and set in the constructor. The mean of the Gaussian is assumed to be zero. * *

The negative log-likelihood can be evaluated over the entire set of observed values or for a * chosen observed value. The sum uses a non-normalised Poisson-Gaussian distribution for speed (see * {@link PoissonGaussianFunction#pseudoLikelihood(double, double, double, boolean)} ). */ public class PoissonGaussianLikelihoodWrapper extends LikelihoodWrapper { private final PoissonGaussianFunction2 pg; private static final boolean USE_PICCARD = false; /** * Initialise the function. * *

The input parameters must be the full parameters for the non-linear function. Only those * parameters with gradient indices should be passed in to the functions to obtain the value (and * gradient). * * @param function The function to be used to calculated the expected values * @param parameters The initial parameters for the function * @param data The observed values * @param dataSize The number of observed values * @param alpha Inverse gain of the EMCCD chip * @param sd The Gaussian standard deviation at readout */ public PoissonGaussianLikelihoodWrapper(NonLinearFunction function, double[] parameters, double[] data, int dataSize, double alpha, double sd) { super(function, parameters, data, dataSize); pg = PoissonGaussianFunction2.createWithStandardDeviation(alpha, sd); pg.setUsePicardApproximation(USE_PICCARD); } @Override public double computeLikelihood() { // Compute the negative log-likelihood to be minimised double ll = 0; for (int i = 0; i < dataSize; i++) { ll -= pg.logLikelihood(data[i], function.eval(i)); } return ll; } @Override public double computeLikelihood(int index) { return -pg.logLikelihood(data[index], function.eval(index)); } @Override public boolean canComputeGradient() { return false; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy