All Downloads are FREE. Search and download functionalities are using the official Maven repository.

uk.ac.sussex.gdsc.smlm.function.gaussian.CircularGaussian2DFunction Maven / Gradle / Ivy

Go to download

Genome Damage and Stability Centre SMLM Package Software for single molecule localisation microscopy (SMLM)

The newest version!
/*-
 * #%L
 * Genome Damage and Stability Centre SMLM Package
 *
 * Software for single molecule localisation microscopy (SMLM)
 * %%
 * Copyright (C) 2011 - 2023 Alex Herbert
 * %%
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program.  If not, see
 * .
 * #L%
 */

package uk.ac.sussex.gdsc.smlm.function.gaussian;

import uk.ac.sussex.gdsc.smlm.utils.StdMath;

/**
 * Evaluates a 2-dimensional Gaussian function for a configured number of peaks.
 *
 * 

The single parameter x in the {@link #eval(int, double[])} function is assumed to be a linear * index into 2-dimensional data. The dimensions of the data must be specified to allow unpacking to * coordinates. * *

Data should be packed in descending dimension order, e.g. Y,X : Index for [x,y] = MaxX*y + x. */ public class CircularGaussian2DFunction extends MultiPeakGaussian2DFunction { /** The number of gradient parameters for each Gaussian. */ protected static final int GRADIENT_PARAMETERS_PER_PEAK = 4; /** The index for the The amplitude./height normalisation: 1/(2*pi*sx*sy). */ protected static final int N = 0; /** The index for the The amplitude./height. */ protected static final int HEIGHT = 1; /** The index for the x0 position pre-factor. */ protected static final int AA = 2; /** The index for the x0 position gradient pre-factor. */ protected static final int AA2 = 3; /** The index for the x width gradient pre-factor. */ protected static final int AX = 4; /** The pre-computed function factors for each Gaussian. */ protected final double[][] peakFactors; /** The Gaussian parameters (a). */ protected double[] params; /** * Constructor. * * @param numberOfPeaks The number of peaks * @param maxx The maximum x value of the 2-dimensional data (used to unpack a linear index into * coordinates) * @param maxy The maximum y value of the 2-dimensional data (used to unpack a linear index into * coordinates) */ public CircularGaussian2DFunction(int numberOfPeaks, int maxx, int maxy) { super(numberOfPeaks, maxx, maxy); peakFactors = new double[numberOfPeaks][5]; } @Override public Gaussian2DFunction copy() { return new CircularGaussian2DFunction(numberOfPeaks, maxx, maxy); } @Override public void initialise(double[] a) { this.params = a; // Precalculate multiplication factors for (int j = 0; j < numberOfPeaks; j++) { final double sx = a[j * PARAMETERS_PER_PEAK + X_SD]; final double sx2 = sx * sx; peakFactors[j][N] = ONE_OVER_TWO_PI / sx2; peakFactors[j][HEIGHT] = a[j * PARAMETERS_PER_PEAK + SIGNAL] * peakFactors[j][N]; // All prefactors are negated since the Gaussian uses the exponential to the negative: // (A/2*pi*sx*sy) * exp( -( a(x-x0)^2 + 2b(x-x0)(y-y0) + c(y-y0)^2 ) ) peakFactors[j][AA] = -0.5 / sx2; peakFactors[j][AA2] = -2.0 * peakFactors[j][AA]; // For the x-width gradient peakFactors[j][AX] = -2 / sx; } } /** * Evaluates a 2-dimensional circular Gaussian function for multiple peaks. * *

{@inheritDoc} */ @Override public double eval(final int x, final double[] dyda) { // Track the position of the parameters int apos = 0; int dydapos = 0; // First parameter is the background level double y = params[BACKGROUND]; dyda[dydapos++] = 1.0; // Gradient for a constant background is 1 // Unpack the predictor into the dimensions final int x1 = x / maxx; final int x0 = x % maxx; for (int j = 0; j < numberOfPeaks; j++) { y += gaussian(x0, x1, dyda, apos, dydapos, peakFactors[j]); apos += PARAMETERS_PER_PEAK; dydapos += GRADIENT_PARAMETERS_PER_PEAK; } return y; } /** * Evaluates a 2-dimensional circular Gaussian function for multiple peaks. * *

{@inheritDoc} */ @Override public double eval(final int x) { // Track the position of the parameters int apos = 0; // First parameter is the background level double y = params[BACKGROUND]; // Unpack the predictor into the dimensions final int x1 = x / maxx; final int x0 = x % maxx; for (int j = 0; j < numberOfPeaks; j++, apos += PARAMETERS_PER_PEAK) { y += gaussian(x0, x1, apos, peakFactors[j]); } return y; } /** * Compute the Gaussian at a set offset from the centre. * * @param x0 the x0 offset * @param x1 the x1 offset * @param dyDa the first-order gradient * @param apos the parameter position for the current peak * @param dydapos the gradient position for the current peak * @param factors the factors * @return the Gaussian value */ protected double gaussian(final int x0, final int x1, final double[] dyDa, final int apos, final int dydapos, final double[] factors) { final double dx = x0 - params[apos + X_POSITION]; final double dy = x1 - params[apos + Y_POSITION]; // Calculate gradients final double aadx2dy2 = factors[AA] * (dx * dx + dy * dy); final double exp = StdMath.exp(aadx2dy2); dyDa[dydapos] = factors[N] * exp; final double y = factors[HEIGHT] * exp; final double yaa2 = y * factors[AA2]; dyDa[dydapos + 1] = yaa2 * dx; dyDa[dydapos + 2] = yaa2 * dy; dyDa[dydapos + 3] = factors[AX] * y * (1 + aadx2dy2); return y; } /** * Compute the Gaussian at a set offset from the centre. * * @param x0 the x0 offset * @param x1 the x1 offset * @param apos the parameter position for the current peak * @param factors the factors * @return the Gaussian value */ protected double gaussian(final int x0, final int x1, final int apos, final double[] factors) { final double dx = x0 - params[apos + X_POSITION]; final double dy = x1 - params[apos + Y_POSITION]; return factors[HEIGHT] * StdMath.exp(factors[AA] * (dx * dx + dy * dy)); } @Override public boolean evaluatesBackground() { return true; } @Override public boolean evaluatesSignal() { return true; } @Override public boolean evaluatesAngle() { return false; } @Override public boolean evaluatesPosition() { return true; } @Override public boolean evaluatesSD0() { return true; } @Override public boolean evaluatesSD1() { return false; } @Override public int getGradientParametersPerPeak() { return GRADIENT_PARAMETERS_PER_PEAK; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy