All Downloads are FREE. Search and download functionalities are using the official Maven repository.

uk.ac.sussex.gdsc.smlm.function.gaussian.erf.SingleErfGaussian2DFunction Maven / Gradle / Ivy

Go to download

Genome Damage and Stability Centre SMLM Package Software for single molecule localisation microscopy (SMLM)

The newest version!
/*-
 * #%L
 * Genome Damage and Stability Centre SMLM Package
 *
 * Software for single molecule localisation microscopy (SMLM)
 * %%
 * Copyright (C) 2011 - 2023 Alex Herbert
 * %%
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program.  If not, see
 * .
 * #L%
 */

package uk.ac.sussex.gdsc.smlm.function.gaussian.erf;

import uk.ac.sussex.gdsc.smlm.function.ValueProcedure;

/**
 * Abstract base class for a 2-dimensional Gaussian function for a configured number of peaks.
 *
 * 

The function will calculate the value of the Gaussian and evaluate the gradient of a set of * parameters. The class can specify which of the following parameters the function will * evaluate:
background, signal, z-depth, position0, position1, sd0, sd1 * *

The class provides an index of the position in the parameter array where the parameter is * expected. */ public abstract class SingleErfGaussian2DFunction extends ErfGaussian2DFunction { // Required for the PSF /** The intensity. */ // CHECKSTYLE.OFF: MemberName protected double tI; // CHECKSTYLE.ON: MemberName /** * Instantiates a new erf gaussian 2D function. * * @param maxx The maximum x value of the 2-dimensional data (used to unpack a linear index into * coordinates) * @param maxy The maximum y value of the 2-dimensional data (used to unpack a linear index into * coordinates) */ public SingleErfGaussian2DFunction(int maxx, int maxy) { super(1, maxx, maxy); } @Override public int getNPeaks() { return 1; } /** * Evaluates a 2-dimensional Gaussian function for a single peak. * * @param x Input predictor * @return The Gaussian value */ @Override public double eval(final int x) { // Unpack the predictor into the dimensions final int yy = x / maxx; final int xx = x % maxx; return tb + tI * deltaEx[xx] * deltaEy[yy]; } /** * Evaluates a 2-dimensional Gaussian function for a single peak. * * @param x Input predictor * @param duda Partial gradient of function with respect to each coefficient * @return The predicted value */ @Override public abstract double eval(int x, double[] duda); /** * Evaluates a 2-dimensional Gaussian function for a single peak. * * @param x Input predictor * @param duda Partial first gradient of function with respect to each coefficient * @param d2uda2 Partial second gradient of function with respect to each coefficient * @return The predicted value */ @Override public abstract double eval2(int x, double[] duda, double[] d2uda2); @Override public void forEach(ValueProcedure procedure) { if (tb == 0) { for (int y = 0; y < maxy; y++) { final double tI_deltaEy = tI * deltaEy[y]; for (int x = 0; x < maxx; x++) { procedure.execute(tI_deltaEy * deltaEx[x]); } } } else { for (int y = 0; y < maxy; y++) { final double tI_deltaEy = tI * deltaEy[y]; for (int x = 0; x < maxx; x++) { procedure.execute(tb + tI_deltaEy * deltaEx[x]); } } } } @Override public double[] computeValues(double[] variables) { initialise0(variables); final double[] values = new double[size()]; if (tb == 0) { for (int y = 0, i = 0; y < maxy; y++) { final double tI_deltaEy = tI * deltaEy[y]; for (int x = 0; x < maxx; x++) { values[i++] = tI_deltaEy * deltaEx[x]; } } } else { for (int y = 0, i = 0; y < maxy; y++) { final double tI_deltaEy = tI * deltaEy[y]; for (int x = 0; x < maxx; x++) { values[i++] = tb + tI_deltaEy * deltaEx[x]; } } } return values; } // Force implementation @Override public abstract int getNumberOfGradients(); // Force implementation @Override public abstract double integral(double[] a); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy