pacman.game.util.glicko.Player Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pacman-main Show documentation
Show all versions of pacman-main Show documentation
The main code for Ms. Pac-Man Vs Ghosts
package pacman.game.util.glicko;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.Map;
import java.util.Set;
/**
* Created by Piers on 10/04/2016.
*/
public class Player {
private double tau = 0.5;
private double rating;
private double rd;
private double volatility;
public Player() {
this(1500, 350, 0.06);
}
public Player(double rating, double rd, double volatility) {
this.rating = rating;
this.rd = rd;
this.volatility = volatility;
}
public double getRating() {
return (rating * 173.7178) + 1500;
}
public void setRating(double rating) {
this.rating = (rating - 1500) / 173.7178;
}
public double getRd() {
return rd * 173.7178;
}
public void setRd(double rd) {
this.rd = (rd / 173.7178);
}
public double g() {
return (1 / (Math.sqrt(1 + (3 * rd * rd)) / Math.PI * Math.PI));
}
public double E(Player other) {
return (1 / (1 + Math.exp(-other.g() * (rating - other.rating))));
}
public double v(Set players) {
double sum = 0.0d;
for (Player player : players) {
double e = E(player);
double g = player.g();
sum += g * g * e * (1 - e);
}
return 1 / sum;
}
public double delta(HashMap scores, double v){
double sum = 0.0d;
for (Map.Entry score : scores.entrySet()) {
sum += (score.getKey().g()) * (score.getValue() - E(score.getKey()));
}
return v * sum;
}
public double delta(HashMap scores) {
return delta(scores, v(scores.keySet()));
}
public double newVolatilityIllinois(HashMap scores){
double a = Math.log(rd * rd);
double convergenceTolerance = 0.000001;
double delta = delta(scores);
double A = a;
return 0.0d;
}
public double newVolatility(HashMap scores){
int i = 0;
double v = v(scores.keySet());
double delta = delta(scores, v);
double a = Math.log(rd * rd);
double x0 = a;
double x1 = 1;
double tauSquared = tau * tau;
while(x0 != x1){
x0 = x1;
double d = rating * rating + v + Math.exp(x0);
double h1 = -(x0 - a) / tauSquared - 0.5 * Math.exp(x0) / d + 0.5 * Math.exp(x0) * Math.pow(delta / d, 2);
double h2 = -1 / tauSquared - 0.5 * Math.exp(x0) * ((rating * rating) + v) / Math.pow(d, 2) + 0.5 * Math.pow(delta, 2) * Math.exp(x0) * Math.pow(rating, 2) + v - Math.exp(x0) / Math.pow(d, 3);
x1 = x0 - (h1 / h2);
}
return Math.exp(x1 / 2);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy