All Downloads are FREE. Search and download functionalities are using the official Maven repository.

uk.org.retep.util.io.lzma.Encoder Maven / Gradle / Ivy

There is a newer version: 10.6
Show newest version
package uk.org.retep.util.io.lzma;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import uk.org.retep.util.monitor.ProgressListener;

/**
 * 

* Part of the LZMA SDK 4.63 written and placed in the public domain by * Igor Pavlov. *

* *

* The LZMA SDK provides the documentation, samples, header files, libraries, * and tools you need to develop applications that use LZMA compression. *

* *

* LZMA is default and general compression method of 7z format * in 7-Zip compression program (www.7-zip.org). LZMA provides high * compression ratio and very fast decompression. *

* *

* LZMA is an improved version of famous LZ77 compression algorithm. * It was improved in way of maximum increasing of compression ratio, * keeping high decompression speed and low memory requirements for * decompressing. *

* *

* This version is virtually identical to his version except minor refactoring * to conform with coding standards and Java 6. *

* * @author Igor Pavlov * @since 9.1.17 */ public class Encoder { public static final int EMatchFinderTypeBT2 = 0; public static final int EMatchFinderTypeBT4 = 1; private static final int kIfinityPrice = 0xFFFFFFF; private static byte[] g_FastPos = new byte[ 1 << 11 ]; static { int kFastSlots = 22; int c = 2; g_FastPos[0] = 0; g_FastPos[1] = 1; for( int slotFast = 2; slotFast < kFastSlots; slotFast++ ) { int k = (1 << ((slotFast >> 1) - 1)); for( int j = 0; j < k; j++, c++ ) { g_FastPos[c] = (byte) slotFast; } } } private static int getPosSlot( final int pos ) { if( pos < (1 << 11) ) { return g_FastPos[pos]; } if( pos < (1 << 21) ) { return (g_FastPos[pos >> 10] + 20); } return (g_FastPos[pos >> 20] + 40); } private static int getPosSlot2( final int pos ) { if( pos < (1 << 17) ) { return (g_FastPos[pos >> 6] + 12); } if( pos < (1 << 27) ) { return (g_FastPos[pos >> 16] + 32); } return (g_FastPos[pos >> 26] + 52); } private int _state = Base.stateInit(); private byte _previousByte; private int[] _repDistances = new int[ Base.kNumRepDistances ]; private void baseInit() { _state = Base.stateInit(); _previousByte = 0; for( int i = 0; i < Base.kNumRepDistances; i++ ) { _repDistances[i] = 0; } } private static final int kDefaultDictionaryLogSize = 22; private static final int kNumFastBytesDefault = 0x20; private class LiteralEncoder { private class Encoder2 { private short[] m_Encoders = new short[ 0x300 ]; public void init() { RangeEncoder.initBitModels( m_Encoders ); } public void encode( final RangeEncoder rangeEncoder, final byte symbol ) throws IOException { int context = 1; for( int i = 7; i >= 0; i-- ) { int bit = ((symbol >> i) & 1); rangeEncoder.encode( m_Encoders, context, bit ); context = (context << 1) | bit; } } public void encodeMatched( final RangeEncoder rangeEncoder, final byte matchByte, final byte symbol ) throws IOException { int context = 1; boolean same = true; for( int i = 7; i >= 0; i-- ) { int bit = ((symbol >> i) & 1); int state = context; if( same ) { int matchBit = ((matchByte >> i) & 1); state += ((1 + matchBit) << 8); same = (matchBit == bit); } rangeEncoder.encode( m_Encoders, state, bit ); context = (context << 1) | bit; } } public int getPrice( final boolean matchMode, final byte matchByte, final byte symbol ) { int price = 0; int context = 1; int i = 7; if( matchMode ) { for( ; i >= 0; i-- ) { int matchBit = (matchByte >> i) & 1; int bit = (symbol >> i) & 1; price += RangeEncoder.getPrice( m_Encoders[((1 + matchBit) << 8) + context], bit ); context = (context << 1) | bit; if( matchBit != bit ) { i--; break; } } } for( ; i >= 0; i-- ) { int bit = (symbol >> i) & 1; price += RangeEncoder.getPrice( m_Encoders[context], bit ); context = (context << 1) | bit; } return price; } } private Encoder2[] m_Coders; private int m_NumPrevBits; private int m_NumPosBits; private int m_PosMask; public void create( final int numPosBits, final int numPrevBits ) { if( m_Coders != null && m_NumPrevBits == numPrevBits && m_NumPosBits == numPosBits ) { return; } m_NumPosBits = numPosBits; m_PosMask = (1 << numPosBits) - 1; m_NumPrevBits = numPrevBits; int numStates = 1 << (m_NumPrevBits + m_NumPosBits); m_Coders = new Encoder2[ numStates ]; for( int i = 0; i < numStates; i++ ) { m_Coders[i] = new Encoder2(); } } public void init() { int numStates = 1 << (m_NumPrevBits + m_NumPosBits); for( int i = 0; i < numStates; i++ ) { m_Coders[i].init(); } } public Encoder2 getSubCoder( final int pos, final byte prevByte ) { return m_Coders[((pos & m_PosMask) << m_NumPrevBits) + ((prevByte & 0xFF) >>> (8 - m_NumPrevBits))]; } } private class LenEncoder { private short[] _choice = new short[ 2 ]; private BitTreeEncoder[] _lowCoder = new BitTreeEncoder[ Base.kNumPosStatesEncodingMax ]; private BitTreeEncoder[] _midCoder = new BitTreeEncoder[ Base.kNumPosStatesEncodingMax ]; private BitTreeEncoder _highCoder = new BitTreeEncoder( Base.kNumHighLenBits ); public LenEncoder() { for( int posState = 0; posState < Base.kNumPosStatesEncodingMax; posState++ ) { _lowCoder[posState] = new BitTreeEncoder( Base.kNumLowLenBits ); _midCoder[posState] = new BitTreeEncoder( Base.kNumMidLenBits ); } } public void init( final int numPosStates ) { RangeEncoder.initBitModels( _choice ); for( int posState = 0; posState < numPosStates; posState++ ) { _lowCoder[posState].init(); _midCoder[posState].init(); } _highCoder.init(); } public void encode( final RangeEncoder rangeEncoder, final int symbol, final int posState ) throws IOException { if( symbol < Base.kNumLowLenSymbols ) { rangeEncoder.encode( _choice, 0, 0 ); _lowCoder[posState].encode( rangeEncoder, symbol ); } else { int newSymbol = symbol - Base.kNumLowLenSymbols; rangeEncoder.encode( _choice, 0, 1 ); if( newSymbol < Base.kNumMidLenSymbols ) { rangeEncoder.encode( _choice, 1, 0 ); _midCoder[posState].encode( rangeEncoder, newSymbol ); } else { rangeEncoder.encode( _choice, 1, 1 ); _highCoder.encode( rangeEncoder, newSymbol - Base.kNumMidLenSymbols ); } } } public void setPrices( final int posState, final int numSymbols, final int[] prices, final int st ) { int a0 = RangeEncoder.getPrice0( _choice[0] ); int a1 = RangeEncoder.getPrice1( _choice[0] ); int b0 = a1 + RangeEncoder.getPrice0( _choice[1] ); int b1 = a1 + RangeEncoder.getPrice1( _choice[1] ); int i = 0; for( i = 0; i < Base.kNumLowLenSymbols; i++ ) { if( i >= numSymbols ) { return; } prices[st + i] = a0 + _lowCoder[posState].getPrice( i ); } for( ; i < Base.kNumLowLenSymbols + Base.kNumMidLenSymbols; i++ ) { if( i >= numSymbols ) { return; } prices[st + i] = b0 + _midCoder[posState].getPrice( i - Base.kNumLowLenSymbols ); } for( ; i < numSymbols; i++ ) { prices[st + i] = b1 + _highCoder.getPrice( i - Base.kNumLowLenSymbols - Base.kNumMidLenSymbols ); } } }; private static final int kNumLenSpecSymbols = Base.kNumLowLenSymbols + Base.kNumMidLenSymbols; private class LenPriceTableEncoder extends LenEncoder { private int[] _prices = new int[ Base.kNumLenSymbols << Base.kNumPosStatesBitsEncodingMax ]; private int _tableSize; private int[] _counters = new int[ Base.kNumPosStatesEncodingMax ]; public void setTableSize( final int tableSize ) { _tableSize = tableSize; } public int getPrice( final int symbol, final int posState ) { return _prices[posState * Base.kNumLenSymbols + symbol]; } private void updateTable( final int posState ) { setPrices( posState, _tableSize, _prices, posState * Base.kNumLenSymbols ); _counters[posState] = _tableSize; } public void updateTables( final int numPosStates ) { for( int posState = 0; posState < numPosStates; posState++ ) { updateTable( posState ); } } @Override public void encode( final RangeEncoder rangeEncoder, final int symbol, final int posState ) throws IOException { super.encode( rangeEncoder, symbol, posState ); if( --_counters[posState] == 0 ) { updateTable( posState ); } } } private static final int kNumOpts = 1 << 12; final class Optimal { private int State; private boolean Prev1IsChar; private boolean Prev2; private int PosPrev2; private int BackPrev2; private int Price; private int PosPrev; private int BackPrev; private int Backs0; private int Backs1; private int Backs2; private int Backs3; public void makeAsChar() { BackPrev = -1; Prev1IsChar = false; } public void makeAsShortRep() { BackPrev = 0; ; Prev1IsChar = false; } public boolean isShortRep() { return (BackPrev == 0); } }; private Optimal[] _optimum = new Optimal[ kNumOpts ]; private BinTree _matchFinder = null; private RangeEncoder _rangeEncoder = new RangeEncoder(); private short[] _isMatch = new short[ Base.kNumStates << Base.kNumPosStatesBitsMax ]; private short[] _isRep = new short[ Base.kNumStates ]; private short[] _isRepG0 = new short[ Base.kNumStates ]; private short[] _isRepG1 = new short[ Base.kNumStates ]; private short[] _isRepG2 = new short[ Base.kNumStates ]; private short[] _isRep0Long = new short[ Base.kNumStates << Base.kNumPosStatesBitsMax ]; private BitTreeEncoder[] _posSlotEncoder = new BitTreeEncoder[ Base.kNumLenToPosStates ]; // kNumPosSlotBits private short[] _posEncoders = new short[ Base.kNumFullDistances - Base.kEndPosModelIndex ]; private BitTreeEncoder _posAlignEncoder = new BitTreeEncoder( Base.kNumAlignBits ); private LenPriceTableEncoder _lenEncoder = new LenPriceTableEncoder(); private LenPriceTableEncoder _repMatchLenEncoder = new LenPriceTableEncoder(); private LiteralEncoder _literalEncoder = new LiteralEncoder(); private int[] _matchDistances = new int[ Base.kMatchMaxLen * 2 + 2 ]; private int _numFastBytes = kNumFastBytesDefault; private int _longestMatchLength; private int _numDistancePairs; private int _additionalOffset; private int _optimumEndIndex; private int _optimumCurrentIndex; private boolean _longestMatchWasFound; private int[] _posSlotPrices = new int[ 1 << (Base.kNumPosSlotBits + Base.kNumLenToPosStatesBits) ]; private int[] _distancesPrices = new int[ Base.kNumFullDistances << Base.kNumLenToPosStatesBits ]; private int[] _alignPrices = new int[ Base.kAlignTableSize ]; private int _alignPriceCount; private int _distTableSize = (kDefaultDictionaryLogSize * 2); private int _posStateBits = 2; private int _posStateMask = (4 - 1); private int _numLiteralPosStateBits = 0; private int _numLiteralContextBits = 3; private int _dictionarySize = (1 << kDefaultDictionaryLogSize); private int _dictionarySizePrev = -1; private int _numFastBytesPrev = -1; private long nowPos64; private boolean _finished; private InputStream _inStream; private int _matchFinderType = EMatchFinderTypeBT4; private boolean _writeEndMark = false; private boolean _needReleaseMFStream = false; private void create() { if( _matchFinder == null ) { BinTree bt = new BinTree(); int numHashBytes = 4; if( _matchFinderType == EMatchFinderTypeBT2 ) { numHashBytes = 2; } bt.setType( numHashBytes ); _matchFinder = bt; } _literalEncoder.create( _numLiteralPosStateBits, _numLiteralContextBits ); if( _dictionarySize == _dictionarySizePrev && _numFastBytesPrev == _numFastBytes ) { return; } _matchFinder.create( _dictionarySize, kNumOpts, _numFastBytes, Base.kMatchMaxLen + 1 ); _dictionarySizePrev = _dictionarySize; _numFastBytesPrev = _numFastBytes; } public Encoder() { for( int i = 0; i < kNumOpts; i++ ) { _optimum[i] = new Optimal(); } for( int i = 0; i < Base.kNumLenToPosStates; i++ ) { _posSlotEncoder[i] = new BitTreeEncoder( Base.kNumPosSlotBits ); } } private void setWriteEndMarkerMode( final boolean writeEndMarker ) { _writeEndMark = writeEndMarker; } private void init() { baseInit(); _rangeEncoder.init(); RangeEncoder.initBitModels( _isMatch ); RangeEncoder.initBitModels( _isRep0Long ); RangeEncoder.initBitModels( _isRep ); RangeEncoder.initBitModels( _isRepG0 ); RangeEncoder.initBitModels( _isRepG1 ); RangeEncoder.initBitModels( _isRepG2 ); RangeEncoder.initBitModels( _posEncoders ); _literalEncoder.init(); for( int i = 0; i < Base.kNumLenToPosStates; i++ ) { _posSlotEncoder[i].init(); } _lenEncoder.init( 1 << _posStateBits ); _repMatchLenEncoder.init( 1 << _posStateBits ); _posAlignEncoder.init(); _longestMatchWasFound = false; _optimumEndIndex = 0; _optimumCurrentIndex = 0; _additionalOffset = 0; } private int readMatchDistances() throws IOException { int lenRes = 0; _numDistancePairs = _matchFinder.getMatches( _matchDistances ); if( _numDistancePairs > 0 ) { lenRes = _matchDistances[_numDistancePairs - 2]; if( lenRes == _numFastBytes ) { lenRes += _matchFinder.getMatchLen( lenRes - 1, _matchDistances[_numDistancePairs - 1], Base.kMatchMaxLen - lenRes ); } } _additionalOffset++; return lenRes; } private void movePos( final int num ) throws IOException { if( num > 0 ) { _matchFinder.skip( num ); _additionalOffset += num; } } private int getRepLen1Price( final int state, final int posState ) { return RangeEncoder.getPrice0( _isRepG0[state] ) + RangeEncoder.getPrice0( _isRep0Long[(state << Base.kNumPosStatesBitsMax) + posState] ); } private int getPureRepPrice( final int repIndex, final int state, final int posState ) { int price; if( repIndex == 0 ) { price = RangeEncoder.getPrice0( _isRepG0[state] ); price += RangeEncoder.getPrice1( _isRep0Long[(state << Base.kNumPosStatesBitsMax) + posState] ); } else { price = RangeEncoder.getPrice1( _isRepG0[state] ); if( repIndex == 1 ) { price += RangeEncoder.getPrice0( _isRepG1[state] ); } else { price += RangeEncoder.getPrice1( _isRepG1[state] ); price += RangeEncoder.getPrice( _isRepG2[state], repIndex - 2 ); } } return price; } private int getRepPrice( final int repIndex, final int len, final int state, final int posState ) { int price = _repMatchLenEncoder.getPrice( len - Base.kMatchMinLen, posState ); return price + getPureRepPrice( repIndex, state, posState ); } private int getPosLenPrice( final int pos, final int len, final int posState ) { int price; int lenToPosState = Base.GetLenToPosState( len ); if( pos < Base.kNumFullDistances ) { price = _distancesPrices[(lenToPosState * Base.kNumFullDistances) + pos]; } else { price = _posSlotPrices[(lenToPosState << Base.kNumPosSlotBits) + getPosSlot2( pos )] + _alignPrices[pos & Base.kAlignMask]; } return price + _lenEncoder.getPrice( len - Base.kMatchMinLen, posState ); } private int backward( final int current ) { int cur = current; _optimumEndIndex = cur; int posMem = _optimum[cur].PosPrev; int backMem = _optimum[cur].BackPrev; do { if( _optimum[cur].Prev1IsChar ) { _optimum[posMem].makeAsChar(); _optimum[posMem].PosPrev = posMem - 1; if( _optimum[cur].Prev2 ) { _optimum[posMem - 1].Prev1IsChar = false; _optimum[posMem - 1].PosPrev = _optimum[cur].PosPrev2; _optimum[posMem - 1].BackPrev = _optimum[cur].BackPrev2; } } int posPrev = posMem; int backCur = backMem; backMem = _optimum[posPrev].BackPrev; posMem = _optimum[posPrev].PosPrev; _optimum[posPrev].BackPrev = backCur; _optimum[posPrev].PosPrev = cur; cur = posPrev; } while( cur > 0 ); backRes = _optimum[0].BackPrev; _optimumCurrentIndex = _optimum[0].PosPrev; return _optimumCurrentIndex; } private int[] reps = new int[ Base.kNumRepDistances ]; private int[] repLens = new int[ Base.kNumRepDistances ]; private int backRes; private int getOptimum( final int position ) throws IOException { int curpos = position; if( _optimumEndIndex != _optimumCurrentIndex ) { int lenRes = _optimum[_optimumCurrentIndex].PosPrev - _optimumCurrentIndex; backRes = _optimum[_optimumCurrentIndex].BackPrev; _optimumCurrentIndex = _optimum[_optimumCurrentIndex].PosPrev; return lenRes; } _optimumCurrentIndex = _optimumEndIndex = 0; int lenMain, numDistancePairs; if( !_longestMatchWasFound ) { lenMain = readMatchDistances(); } else { lenMain = _longestMatchLength; _longestMatchWasFound = false; } numDistancePairs = _numDistancePairs; int numAvailableBytes = _matchFinder.getNumAvailableBytes() + 1; if( numAvailableBytes < 2 ) { backRes = -1; return 1; } if( numAvailableBytes > Base.kMatchMaxLen ) { numAvailableBytes = Base.kMatchMaxLen; } int repMaxIndex = 0; int i; for( i = 0; i < Base.kNumRepDistances; i++ ) { reps[i] = _repDistances[i]; repLens[i] = _matchFinder.getMatchLen( 0 - 1, reps[i], Base.kMatchMaxLen ); if( repLens[i] > repLens[repMaxIndex] ) { repMaxIndex = i; } } if( repLens[repMaxIndex] >= _numFastBytes ) { backRes = repMaxIndex; int lenRes = repLens[repMaxIndex]; movePos( lenRes - 1 ); return lenRes; } if( lenMain >= _numFastBytes ) { backRes = _matchDistances[numDistancePairs - 1] + Base.kNumRepDistances; movePos( lenMain - 1 ); return lenMain; } byte currentByte = _matchFinder.getIndexByte( 0 - 1 ); byte matchByte = _matchFinder.getIndexByte( 0 - _repDistances[0] - 1 - 1 ); if( lenMain < 2 && currentByte != matchByte && repLens[repMaxIndex] < 2 ) { backRes = -1; return 1; } _optimum[0].State = _state; int posState = (curpos & _posStateMask); _optimum[1].Price = RangeEncoder.getPrice0( _isMatch[(_state << Base.kNumPosStatesBitsMax) + posState] ) + _literalEncoder.getSubCoder( curpos, _previousByte ).getPrice( !Base.stateIsCharState( _state ), matchByte, currentByte ); _optimum[1].makeAsChar(); int matchPrice = RangeEncoder.getPrice1( _isMatch[(_state << Base.kNumPosStatesBitsMax) + posState] ); int repMatchPrice = matchPrice + RangeEncoder.getPrice1( _isRep[_state] ); if( matchByte == currentByte ) { int shortRepPrice = repMatchPrice + getRepLen1Price( _state, posState ); if( shortRepPrice < _optimum[1].Price ) { _optimum[1].Price = shortRepPrice; _optimum[1].makeAsShortRep(); } } int lenEnd = ((lenMain >= repLens[repMaxIndex]) ? lenMain : repLens[repMaxIndex]); if( lenEnd < 2 ) { backRes = _optimum[1].BackPrev; return 1; } _optimum[1].PosPrev = 0; _optimum[0].Backs0 = reps[0]; _optimum[0].Backs1 = reps[1]; _optimum[0].Backs2 = reps[2]; _optimum[0].Backs3 = reps[3]; int len = lenEnd; do { _optimum[len--].Price = kIfinityPrice; } while( len >= 2 ); for( i = 0; i < Base.kNumRepDistances; i++ ) { int repLen = repLens[i]; if( repLen < 2 ) { continue; } int price = repMatchPrice + getPureRepPrice( i, _state, posState ); do { int curAndLenPrice = price + _repMatchLenEncoder.getPrice( repLen - 2, posState ); Optimal optimum = _optimum[repLen]; if( curAndLenPrice < optimum.Price ) { optimum.Price = curAndLenPrice; optimum.PosPrev = 0; optimum.BackPrev = i; optimum.Prev1IsChar = false; } } while( --repLen >= 2 ); } int normalMatchPrice = matchPrice + RangeEncoder.getPrice0( _isRep[_state] ); len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2); if( len <= lenMain ) { int offs = 0; while( len > _matchDistances[offs] ) { offs += 2; } for( ;; len++ ) { int distance = _matchDistances[offs + 1]; int curAndLenPrice = normalMatchPrice + getPosLenPrice( distance, len, posState ); Optimal optimum = _optimum[len]; if( curAndLenPrice < optimum.Price ) { optimum.Price = curAndLenPrice; optimum.PosPrev = 0; optimum.BackPrev = distance + Base.kNumRepDistances; optimum.Prev1IsChar = false; } if( len == _matchDistances[offs] ) { offs += 2; if( offs == numDistancePairs ) { break; } } } } int cur = 0; while( true ) { cur++; if( cur == lenEnd ) { return backward( cur ); } int newLen = readMatchDistances(); numDistancePairs = _numDistancePairs; if( newLen >= _numFastBytes ) { _longestMatchLength = newLen; _longestMatchWasFound = true; return backward( cur ); } curpos++; int posPrev = _optimum[cur].PosPrev; int state; if( _optimum[cur].Prev1IsChar ) { posPrev--; if( _optimum[cur].Prev2 ) { state = _optimum[_optimum[cur].PosPrev2].State; if( _optimum[cur].BackPrev2 < Base.kNumRepDistances ) { state = Base.stateUpdateRep( state ); } else { state = Base.stateUpdateMatch( state ); } } else { state = _optimum[posPrev].State; } state = Base.stateUpdateChar( state ); } else { state = _optimum[posPrev].State; } if( posPrev == cur - 1 ) { if( _optimum[cur].isShortRep() ) { state = Base.stateUpdateShortRep( state ); } else { state = Base.stateUpdateChar( state ); } } else { int pos; if( _optimum[cur].Prev1IsChar && _optimum[cur].Prev2 ) { posPrev = _optimum[cur].PosPrev2; pos = _optimum[cur].BackPrev2; state = Base.stateUpdateRep( state ); } else { pos = _optimum[cur].BackPrev; if( pos < Base.kNumRepDistances ) { state = Base.stateUpdateRep( state ); } else { state = Base.stateUpdateMatch( state ); } } Optimal opt = _optimum[posPrev]; if( pos < Base.kNumRepDistances ) { if( pos == 0 ) { reps[0] = opt.Backs0; reps[1] = opt.Backs1; reps[2] = opt.Backs2; reps[3] = opt.Backs3; } else if( pos == 1 ) { reps[0] = opt.Backs1; reps[1] = opt.Backs0; reps[2] = opt.Backs2; reps[3] = opt.Backs3; } else if( pos == 2 ) { reps[0] = opt.Backs2; reps[1] = opt.Backs0; reps[2] = opt.Backs1; reps[3] = opt.Backs3; } else { reps[0] = opt.Backs3; reps[1] = opt.Backs0; reps[2] = opt.Backs1; reps[3] = opt.Backs2; } } else { reps[0] = (pos - Base.kNumRepDistances); reps[1] = opt.Backs0; reps[2] = opt.Backs1; reps[3] = opt.Backs2; } } _optimum[cur].State = state; _optimum[cur].Backs0 = reps[0]; _optimum[cur].Backs1 = reps[1]; _optimum[cur].Backs2 = reps[2]; _optimum[cur].Backs3 = reps[3]; int curPrice = _optimum[cur].Price; currentByte = _matchFinder.getIndexByte( 0 - 1 ); matchByte = _matchFinder.getIndexByte( 0 - reps[0] - 1 - 1 ); posState = (curpos & _posStateMask); int curAnd1Price = curPrice + RangeEncoder.getPrice0( _isMatch[(state << Base.kNumPosStatesBitsMax) + posState] ) + _literalEncoder.getSubCoder( curpos, _matchFinder.getIndexByte( 0 - 2 ) ). getPrice( !Base.stateIsCharState( state ), matchByte, currentByte ); Optimal nextOptimum = _optimum[cur + 1]; boolean nextIsChar = false; if( curAnd1Price < nextOptimum.Price ) { nextOptimum.Price = curAnd1Price; nextOptimum.PosPrev = cur; nextOptimum.makeAsChar(); nextIsChar = true; } matchPrice = curPrice + RangeEncoder.getPrice1( _isMatch[(state << Base.kNumPosStatesBitsMax) + posState] ); repMatchPrice = matchPrice + RangeEncoder.getPrice1( _isRep[state] ); if( matchByte == currentByte && !(nextOptimum.PosPrev < cur && nextOptimum.BackPrev == 0) ) { int shortRepPrice = repMatchPrice + getRepLen1Price( state, posState ); if( shortRepPrice <= nextOptimum.Price ) { nextOptimum.Price = shortRepPrice; nextOptimum.PosPrev = cur; nextOptimum.makeAsShortRep(); nextIsChar = true; } } int numAvailableBytesFull = _matchFinder.getNumAvailableBytes() + 1; numAvailableBytesFull = Math.min( kNumOpts - 1 - cur, numAvailableBytesFull ); numAvailableBytes = numAvailableBytesFull; if( numAvailableBytes < 2 ) { continue; } if( numAvailableBytes > _numFastBytes ) { numAvailableBytes = _numFastBytes; } if( !nextIsChar && matchByte != currentByte ) { // try Literal + rep0 int t = Math.min( numAvailableBytesFull - 1, _numFastBytes ); int lenTest2 = _matchFinder.getMatchLen( 0, reps[0], t ); if( lenTest2 >= 2 ) { int state2 = Base.stateUpdateChar( state ); int posStateNext = (curpos + 1) & _posStateMask; int nextRepMatchPrice = curAnd1Price + RangeEncoder.getPrice1( _isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext] ) + RangeEncoder.getPrice1( _isRep[state2] ); { int offset = cur + 1 + lenTest2; while( lenEnd < offset ) { _optimum[++lenEnd].Price = kIfinityPrice; } int curAndLenPrice = nextRepMatchPrice + getRepPrice( 0, lenTest2, state2, posStateNext ); Optimal optimum = _optimum[offset]; if( curAndLenPrice < optimum.Price ) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur + 1; optimum.BackPrev = 0; optimum.Prev1IsChar = true; optimum.Prev2 = false; } } } } int startLen = 2; // speed optimization for( int repIndex = 0; repIndex < Base.kNumRepDistances; repIndex++ ) { int lenTest = _matchFinder.getMatchLen( 0 - 1, reps[repIndex], numAvailableBytes ); if( lenTest < 2 ) { continue; } int lenTestTemp = lenTest; do { while( lenEnd < cur + lenTest ) { _optimum[++lenEnd].Price = kIfinityPrice; } int curAndLenPrice = repMatchPrice + getRepPrice( repIndex, lenTest, state, posState ); Optimal optimum = _optimum[cur + lenTest]; if( curAndLenPrice < optimum.Price ) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur; optimum.BackPrev = repIndex; optimum.Prev1IsChar = false; } } while( --lenTest >= 2 ); lenTest = lenTestTemp; if( repIndex == 0 ) { startLen = lenTest + 1; } // if (_maxMode) if( lenTest < numAvailableBytesFull ) { int t = Math.min( numAvailableBytesFull - 1 - lenTest, _numFastBytes ); int lenTest2 = _matchFinder.getMatchLen( lenTest, reps[repIndex], t ); if( lenTest2 >= 2 ) { int state2 = Base.stateUpdateRep( state ); int posStateNext = (curpos + lenTest) & _posStateMask; int curAndLenCharPrice = repMatchPrice + getRepPrice( repIndex, lenTest, state, posState ) + RangeEncoder.getPrice0( _isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext] ) + _literalEncoder.getSubCoder( curpos + lenTest, _matchFinder.getIndexByte( lenTest - 1 - 1 ) ).getPrice( true, _matchFinder.getIndexByte( lenTest - 1 - (reps[repIndex] + 1) ), _matchFinder.getIndexByte( lenTest - 1 ) ); state2 = Base.stateUpdateChar( state2 ); posStateNext = (curpos + lenTest + 1) & _posStateMask; int nextMatchPrice = curAndLenCharPrice + RangeEncoder.getPrice1( _isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext] ); int nextRepMatchPrice = nextMatchPrice + RangeEncoder.getPrice1( _isRep[state2] ); // for(; lenTest2 >= 2; lenTest2--) { int offset = lenTest + 1 + lenTest2; while( lenEnd < cur + offset ) { _optimum[++lenEnd].Price = kIfinityPrice; } int curAndLenPrice = nextRepMatchPrice + getRepPrice( 0, lenTest2, state2, posStateNext ); Optimal optimum = _optimum[cur + offset]; if( curAndLenPrice < optimum.Price ) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur + lenTest + 1; optimum.BackPrev = 0; optimum.Prev1IsChar = true; optimum.Prev2 = true; optimum.PosPrev2 = cur; optimum.BackPrev2 = repIndex; } } } } } if( newLen > numAvailableBytes ) { newLen = numAvailableBytes; numDistancePairs = 0; while( newLen > _matchDistances[numDistancePairs] ) { numDistancePairs += 2; } _matchDistances[numDistancePairs] = newLen; numDistancePairs += 2; } if( newLen >= startLen ) { normalMatchPrice = matchPrice + RangeEncoder.getPrice0( _isRep[state] ); while( lenEnd < cur + newLen ) { _optimum[++lenEnd].Price = kIfinityPrice; } int offs = 0; while( startLen > _matchDistances[offs] ) { offs += 2; } for( int lenTest = startLen;; lenTest++ ) { int curBack = _matchDistances[offs + 1]; int curAndLenPrice = normalMatchPrice + getPosLenPrice( curBack, lenTest, posState ); Optimal optimum = _optimum[cur + lenTest]; if( curAndLenPrice < optimum.Price ) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur; optimum.BackPrev = curBack + Base.kNumRepDistances; optimum.Prev1IsChar = false; } if( lenTest == _matchDistances[offs] ) { if( lenTest < numAvailableBytesFull ) { int t = Math.min( numAvailableBytesFull - 1 - lenTest, _numFastBytes ); int lenTest2 = _matchFinder.getMatchLen( lenTest, curBack, t ); if( lenTest2 >= 2 ) { int state2 = Base.stateUpdateMatch( state ); int posStateNext = (curpos + lenTest) & _posStateMask; int curAndLenCharPrice = curAndLenPrice + RangeEncoder.getPrice0( _isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext] ) + _literalEncoder.getSubCoder( curpos + lenTest, _matchFinder.getIndexByte( lenTest - 1 - 1 ) ). getPrice( true, _matchFinder.getIndexByte( lenTest - (curBack + 1) - 1 ), _matchFinder.getIndexByte( lenTest - 1 ) ); state2 = Base.stateUpdateChar( state2 ); posStateNext = (curpos + lenTest + 1) & _posStateMask; int nextMatchPrice = curAndLenCharPrice + RangeEncoder.getPrice1( _isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext] ); int nextRepMatchPrice = nextMatchPrice + RangeEncoder.getPrice1( _isRep[state2] ); int offset = lenTest + 1 + lenTest2; while( lenEnd < cur + offset ) { _optimum[++lenEnd].Price = kIfinityPrice; } curAndLenPrice = nextRepMatchPrice + getRepPrice( 0, lenTest2, state2, posStateNext ); optimum = _optimum[cur + offset]; if( curAndLenPrice < optimum.Price ) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur + lenTest + 1; optimum.BackPrev = 0; optimum.Prev1IsChar = true; optimum.Prev2 = true; optimum.PosPrev2 = cur; optimum.BackPrev2 = curBack + Base.kNumRepDistances; } } } offs += 2; if( offs == numDistancePairs ) { break; } } } } } } private boolean changePair( final int smallDist, final int bigDist ) { int kDif = 7; return (smallDist < (1 << (32 - kDif)) && bigDist >= (smallDist << kDif)); } private void writeEndMarker( final int posState ) throws IOException { if( !_writeEndMark ) { return; } _rangeEncoder.encode( _isMatch, (_state << Base.kNumPosStatesBitsMax) + posState, 1 ); _rangeEncoder.encode( _isRep, _state, 0 ); _state = Base.stateUpdateMatch( _state ); int len = Base.kMatchMinLen; _lenEncoder.encode( _rangeEncoder, len - Base.kMatchMinLen, posState ); int posSlot = (1 << Base.kNumPosSlotBits) - 1; int lenToPosState = Base.GetLenToPosState( len ); _posSlotEncoder[lenToPosState].encode( _rangeEncoder, posSlot ); int footerBits = 30; int posReduced = (1 << footerBits) - 1; _rangeEncoder.encodeDirectBits( posReduced >> Base.kNumAlignBits, footerBits - Base.kNumAlignBits ); _posAlignEncoder.reverseEncode( _rangeEncoder, posReduced & Base.kAlignMask ); } private void flush( final int nowPos ) throws IOException { releaseMFStream(); writeEndMarker( nowPos & _posStateMask ); _rangeEncoder.flushData(); _rangeEncoder.flushStream(); } public void codeOneBlock( final long[] inSize, final long[] outSize, final boolean[] finished ) throws IOException { inSize[0] = 0; outSize[0] = 0; finished[0] = true; if( _inStream != null ) { _matchFinder.setStream( _inStream ); _matchFinder.init(); _needReleaseMFStream = true; _inStream = null; } if( _finished ) { return; } _finished = true; long progressPosValuePrev = nowPos64; if( nowPos64 == 0 ) { if( _matchFinder.getNumAvailableBytes() == 0 ) { flush( (int) nowPos64 ); return; } readMatchDistances(); int posState = (int) (nowPos64) & _posStateMask; _rangeEncoder.encode( _isMatch, (_state << Base.kNumPosStatesBitsMax) + posState, 0 ); _state = Base.stateUpdateChar( _state ); byte curByte = _matchFinder.getIndexByte( 0 - _additionalOffset ); _literalEncoder.getSubCoder( (int) (nowPos64), _previousByte ).encode( _rangeEncoder, curByte ); _previousByte = curByte; _additionalOffset--; nowPos64++; } if( _matchFinder.getNumAvailableBytes() == 0 ) { flush( (int) nowPos64 ); return; } while( true ) { int len = getOptimum( (int) nowPos64 ); int pos = backRes; int posState = ((int) nowPos64) & _posStateMask; int complexState = (_state << Base.kNumPosStatesBitsMax) + posState; if( len == 1 && pos == -1 ) { _rangeEncoder.encode( _isMatch, complexState, 0 ); byte curByte = _matchFinder.getIndexByte( 0 - _additionalOffset ); LiteralEncoder.Encoder2 subCoder = _literalEncoder.getSubCoder( (int) nowPos64, _previousByte ); if( !Base.stateIsCharState( _state ) ) { byte matchByte = _matchFinder.getIndexByte( 0 - _repDistances[0] - 1 - _additionalOffset ); subCoder.encodeMatched( _rangeEncoder, matchByte, curByte ); } else { subCoder.encode( _rangeEncoder, curByte ); } _previousByte = curByte; _state = Base.stateUpdateChar( _state ); } else { _rangeEncoder.encode( _isMatch, complexState, 1 ); if( pos < Base.kNumRepDistances ) { _rangeEncoder.encode( _isRep, _state, 1 ); if( pos == 0 ) { _rangeEncoder.encode( _isRepG0, _state, 0 ); if( len == 1 ) { _rangeEncoder.encode( _isRep0Long, complexState, 0 ); } else { _rangeEncoder.encode( _isRep0Long, complexState, 1 ); } } else { _rangeEncoder.encode( _isRepG0, _state, 1 ); if( pos == 1 ) { _rangeEncoder.encode( _isRepG1, _state, 0 ); } else { _rangeEncoder.encode( _isRepG1, _state, 1 ); _rangeEncoder.encode( _isRepG2, _state, pos - 2 ); } } if( len == 1 ) { _state = Base.stateUpdateShortRep( _state ); } else { _repMatchLenEncoder.encode( _rangeEncoder, len - Base.kMatchMinLen, posState ); _state = Base.stateUpdateRep( _state ); } int distance = _repDistances[pos]; if( pos != 0 ) { for( int i = pos; i >= 1; i-- ) { _repDistances[i] = _repDistances[i - 1]; } _repDistances[0] = distance; } } else { _rangeEncoder.encode( _isRep, _state, 0 ); _state = Base.stateUpdateMatch( _state ); _lenEncoder.encode( _rangeEncoder, len - Base.kMatchMinLen, posState ); pos -= Base.kNumRepDistances; int posSlot = getPosSlot( pos ); int lenToPosState = Base.GetLenToPosState( len ); _posSlotEncoder[lenToPosState].encode( _rangeEncoder, posSlot ); if( posSlot >= Base.kStartPosModelIndex ) { int footerBits = (posSlot >> 1) - 1; int baseVal = ((2 | (posSlot & 1)) << footerBits); int posReduced = pos - baseVal; if( posSlot < Base.kEndPosModelIndex ) { BitTreeEncoder.reverseEncode( _posEncoders, baseVal - posSlot - 1, _rangeEncoder, footerBits, posReduced ); } else { _rangeEncoder.encodeDirectBits( posReduced >> Base.kNumAlignBits, footerBits - Base.kNumAlignBits ); _posAlignEncoder.reverseEncode( _rangeEncoder, posReduced & Base.kAlignMask ); _alignPriceCount++; } } int distance = pos; for( int i = Base.kNumRepDistances - 1; i >= 1; i-- ) { _repDistances[i] = _repDistances[i - 1]; } _repDistances[0] = distance; _matchPriceCount++; } _previousByte = _matchFinder.getIndexByte( len - 1 - _additionalOffset ); } _additionalOffset -= len; nowPos64 += len; if( _additionalOffset == 0 ) { // if (!_fastMode) if( _matchPriceCount >= (1 << 7) ) { fillDistancesPrices(); } if( _alignPriceCount >= Base.kAlignTableSize ) { fillAlignPrices(); } inSize[0] = nowPos64; outSize[0] = _rangeEncoder.getProcessedSizeAdd(); if( _matchFinder.getNumAvailableBytes() == 0 ) { flush( (int) nowPos64 ); return; } if( nowPos64 - progressPosValuePrev >= (1 << 12) ) { _finished = false; finished[0] = false; return; } } } } private void releaseMFStream() { if( _matchFinder != null && _needReleaseMFStream ) { _matchFinder.releaseStream(); _needReleaseMFStream = false; } } private void setOutStream( final OutputStream outStream ) { _rangeEncoder.setStream( outStream ); } private void releaseOutStream() { _rangeEncoder.releaseStream(); } private void releaseStreams() { releaseMFStream(); releaseOutStream(); } private void setStreams( final InputStream inStream, final OutputStream outStream, final long inSize, final long outSize ) { _inStream = inStream; _finished = false; create(); setOutStream( outStream ); init(); // if (!_fastMode) { fillDistancesPrices(); fillAlignPrices(); } _lenEncoder.setTableSize( _numFastBytes + 1 - Base.kMatchMinLen ); _lenEncoder.updateTables( 1 << _posStateBits ); _repMatchLenEncoder.setTableSize( _numFastBytes + 1 - Base.kMatchMinLen ); _repMatchLenEncoder.updateTables( 1 << _posStateBits ); nowPos64 = 0; } private long[] processedInSize = new long[ 1 ]; private long[] processedOutSize = new long[ 1 ]; private boolean[] finished = new boolean[ 1 ]; public void code( final InputStream inStream, final OutputStream outStream, final long inSize, final long outSize, final ProgressListener progress ) throws IOException { _needReleaseMFStream = false; try { setStreams( inStream, outStream, inSize, outSize ); while( true ) { codeOneBlock( processedInSize, processedOutSize, finished ); if( finished[0] ) { return; } if( progress != null ) { progress.showProgress( processedInSize[0], processedOutSize[0] ); } } } finally { releaseStreams(); } } private static final int kPropSize = 5; private byte[] properties = new byte[ kPropSize ]; public void writeCoderProperties( final OutputStream outStream ) throws IOException { properties[0] = (byte) ((_posStateBits * 5 + _numLiteralPosStateBits) * 9 + _numLiteralContextBits); for( int i = 0; i < 4; i++ ) { properties[1 + i] = (byte) (_dictionarySize >> (8 * i)); } outStream.write( properties, 0, kPropSize ); } private int[] tempPrices = new int[ Base.kNumFullDistances ]; private int _matchPriceCount; private void fillDistancesPrices() { for( int i = Base.kStartPosModelIndex; i < Base.kNumFullDistances; i++ ) { int posSlot = getPosSlot( i ); int footerBits = (posSlot >> 1) - 1; int baseVal = ((2 | (posSlot & 1)) << footerBits); tempPrices[i] = BitTreeEncoder.reverseGetPrice( _posEncoders, baseVal - posSlot - 1, footerBits, i - baseVal ); } for( int lenToPosState = 0; lenToPosState < Base.kNumLenToPosStates; lenToPosState++ ) { int posSlot; BitTreeEncoder encoder = _posSlotEncoder[lenToPosState]; int st = (lenToPosState << Base.kNumPosSlotBits); for( posSlot = 0; posSlot < _distTableSize; posSlot++ ) { _posSlotPrices[st + posSlot] = encoder.getPrice( posSlot ); } for( posSlot = Base.kEndPosModelIndex; posSlot < _distTableSize; posSlot++ ) { _posSlotPrices[st + posSlot] += ((((posSlot >> 1) - 1) - Base.kNumAlignBits) << RangeEncoder.kNumBitPriceShiftBits); } int st2 = lenToPosState * Base.kNumFullDistances; int i; for( i = 0; i < Base.kStartPosModelIndex; i++ ) { _distancesPrices[st2 + i] = _posSlotPrices[st + i]; } for( ; i < Base.kNumFullDistances; i++ ) { _distancesPrices[st2 + i] = _posSlotPrices[st + getPosSlot( i )] + tempPrices[i]; } } _matchPriceCount = 0; } private void fillAlignPrices() { for( int i = 0; i < Base.kAlignTableSize; i++ ) { _alignPrices[i] = _posAlignEncoder.reverseGetPrice( i ); } _alignPriceCount = 0; } public boolean setAlgorithm( final int algorithm ) { /* _fastMode = (algorithm == 0); _maxMode = (algorithm >= 2); */ return true; } public boolean setDictionarySize( final int dictionarySize ) { int kDicLogSizeMaxCompress = 29; if( dictionarySize < (1 << Base.kDicLogSizeMin) || dictionarySize > (1 << kDicLogSizeMaxCompress) ) { return false; } _dictionarySize = dictionarySize; int dicLogSize = 0; while( dictionarySize > (1 << dicLogSize) ) { dicLogSize++; } _distTableSize = dicLogSize * 2; return true; } public boolean setNumFastBytes( final int numFastBytes ) { if( numFastBytes < 5 || numFastBytes > Base.kMatchMaxLen ) { return false; } _numFastBytes = numFastBytes; return true; } public boolean setMatchFinder( final int matchFinderIndex ) { if( matchFinderIndex < 0 || matchFinderIndex > 2 ) { return false; } int matchFinderIndexPrev = _matchFinderType; _matchFinderType = matchFinderIndex; if( _matchFinder != null && matchFinderIndexPrev != _matchFinderType ) { _dictionarySizePrev = -1; _matchFinder = null; } return true; } public boolean setLcLpPb( final int lc, final int lp, final int pb ) { if( lp < 0 || lp > Base.kNumLitPosStatesBitsEncodingMax || lc < 0 || lc > Base.kNumLitContextBitsMax || pb < 0 || pb > Base.kNumPosStatesBitsEncodingMax ) { return false; } _numLiteralPosStateBits = lp; _numLiteralContextBits = lc; _posStateBits = pb; _posStateMask = ((1) << _posStateBits) - 1; return true; } public void setEndMarkerMode( final boolean endMarkerMode ) { _writeEndMark = endMarkerMode; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy