All Downloads are FREE. Search and download functionalities are using the official Maven repository.

tensorflow.serving.SessionBundleConfigOuterClass Maven / Gradle / Ivy

The newest version!
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow_serving/servables/tensorflow/session_bundle_config.proto

package tensorflow.serving;

public final class SessionBundleConfigOuterClass {
  private SessionBundleConfigOuterClass() {}
  public static void registerAllExtensions(
      com.google.protobuf.ExtensionRegistryLite registry) {
  }

  public static void registerAllExtensions(
      com.google.protobuf.ExtensionRegistry registry) {
    registerAllExtensions(
        (com.google.protobuf.ExtensionRegistryLite) registry);
  }
  public interface SessionBundleConfigOrBuilder extends
      // @@protoc_insertion_point(interface_extends:tensorflow.serving.SessionBundleConfig)
      com.google.protobuf.MessageOrBuilder {

    /**
     * 
     * The TensorFlow runtime to connect to.
     * See full documentation in tensorflow/core/public/session_options.h.
     * For single machine serving, we recommend using the empty string "", which
     * will configure the local TensorFlow runtime implementation. This provides
     * the best isolation currently available across multiple Session servables.
     * 
* * string session_target = 1; */ java.lang.String getSessionTarget(); /** *
     * The TensorFlow runtime to connect to.
     * See full documentation in tensorflow/core/public/session_options.h.
     * For single machine serving, we recommend using the empty string "", which
     * will configure the local TensorFlow runtime implementation. This provides
     * the best isolation currently available across multiple Session servables.
     * 
* * string session_target = 1; */ com.google.protobuf.ByteString getSessionTargetBytes(); /** *
     * TensorFlow Session configuration options.
     * See details at tensorflow/core/protobuf/config.proto.
     * 
* * .tensorflow.ConfigProto session_config = 2; */ boolean hasSessionConfig(); /** *
     * TensorFlow Session configuration options.
     * See details at tensorflow/core/protobuf/config.proto.
     * 
* * .tensorflow.ConfigProto session_config = 2; */ org.tensorflow.framework.ConfigProto getSessionConfig(); /** *
     * TensorFlow Session configuration options.
     * See details at tensorflow/core/protobuf/config.proto.
     * 
* * .tensorflow.ConfigProto session_config = 2; */ org.tensorflow.framework.ConfigProtoOrBuilder getSessionConfigOrBuilder(); /** *
     * If set, each emitted session is wrapped with a layer that schedules Run()
     * calls in batches. The batching layer is transparent to the client
     * (implements the tensorflow::Session API).
     * IMPORTANT: With batching enabled, client threads will spend most of their
     * time blocked on Session::Run() calls, waiting for enough peer threads to
     * also call Session::Run() such that a large batch can be formed. For good
     * throughput, we recommend setting the number of client threads equal to
     * roughly twice the maximum batch size ('max_batch_size' below).
     * The batching layer uses a SharedBatchScheduler to coordinate batching
     * across multiple session servables emitted by this source adapter. A
     * BatchSchedulerRetrier is added on top of each batching session.
     * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ boolean hasBatchingParameters(); /** *
     * If set, each emitted session is wrapped with a layer that schedules Run()
     * calls in batches. The batching layer is transparent to the client
     * (implements the tensorflow::Session API).
     * IMPORTANT: With batching enabled, client threads will spend most of their
     * time blocked on Session::Run() calls, waiting for enough peer threads to
     * also call Session::Run() such that a large batch can be formed. For good
     * throughput, we recommend setting the number of client threads equal to
     * roughly twice the maximum batch size ('max_batch_size' below).
     * The batching layer uses a SharedBatchScheduler to coordinate batching
     * across multiple session servables emitted by this source adapter. A
     * BatchSchedulerRetrier is added on top of each batching session.
     * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters getBatchingParameters(); /** *
     * If set, each emitted session is wrapped with a layer that schedules Run()
     * calls in batches. The batching layer is transparent to the client
     * (implements the tensorflow::Session API).
     * IMPORTANT: With batching enabled, client threads will spend most of their
     * time blocked on Session::Run() calls, waiting for enough peer threads to
     * also call Session::Run() such that a large batch can be formed. For good
     * throughput, we recommend setting the number of client threads equal to
     * roughly twice the maximum batch size ('max_batch_size' below).
     * The batching layer uses a SharedBatchScheduler to coordinate batching
     * across multiple session servables emitted by this source adapter. A
     * BatchSchedulerRetrier is added on top of each batching session.
     * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ tensorflow.serving.SessionBundleConfigOuterClass.BatchingParametersOrBuilder getBatchingParametersOrBuilder(); /** *
     * If set, session run calls use a separate threadpool for restore and init
     * ops as part of loading the session-bundle. The value of this field should
     * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
     * part of `session_config.session_inter_op_thread_pool`.
     * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ boolean hasSessionRunLoadThreadpoolIndex(); /** *
     * If set, session run calls use a separate threadpool for restore and init
     * ops as part of loading the session-bundle. The value of this field should
     * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
     * part of `session_config.session_inter_op_thread_pool`.
     * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ com.google.protobuf.Int32Value getSessionRunLoadThreadpoolIndex(); /** *
     * If set, session run calls use a separate threadpool for restore and init
     * ops as part of loading the session-bundle. The value of this field should
     * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
     * part of `session_config.session_inter_op_thread_pool`.
     * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ com.google.protobuf.Int32ValueOrBuilder getSessionRunLoadThreadpoolIndexOrBuilder(); /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Transient memory used while loading a model, which is released once the
     * loading phase has completed. (This is on top of the memory used in steady-
     * state while the model is in memory after it has finished loading.)
     * TODO(b/38376838): This is a temporary hack, and it applies to all models.
     * Remove it once resource estimates are moved inside SavedModel.
     * 
* * uint64 experimental_transient_ram_bytes_during_load = 5; */ long getExperimentalTransientRamBytesDuringLoad(); /** *
     * Set of SavedModel tags identifying the specific meta graph def to be
     * loaded.
     * 
* * repeated string saved_model_tags = 6; */ java.util.List getSavedModelTagsList(); /** *
     * Set of SavedModel tags identifying the specific meta graph def to be
     * loaded.
     * 
* * repeated string saved_model_tags = 6; */ int getSavedModelTagsCount(); /** *
     * Set of SavedModel tags identifying the specific meta graph def to be
     * loaded.
     * 
* * repeated string saved_model_tags = 6; */ java.lang.String getSavedModelTags(int index); /** *
     * Set of SavedModel tags identifying the specific meta graph def to be
     * loaded.
     * 
* * repeated string saved_model_tags = 6; */ com.google.protobuf.ByteString getSavedModelTagsBytes(int index); /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Input tensors to append to every Session::Run() call.
     * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ java.util.List getExperimentalFixedInputTensorsList(); /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Input tensors to append to every Session::Run() call.
     * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ org.tensorflow.framework.NamedTensorProto getExperimentalFixedInputTensors(int index); /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Input tensors to append to every Session::Run() call.
     * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ int getExperimentalFixedInputTensorsCount(); /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Input tensors to append to every Session::Run() call.
     * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ java.util.List getExperimentalFixedInputTensorsOrBuilderList(); /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Input tensors to append to every Session::Run() call.
     * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ org.tensorflow.framework.NamedTensorProtoOrBuilder getExperimentalFixedInputTensorsOrBuilder( int index); /** *
     * Enables model warmup.
     * 
* * bool enable_model_warmup = 779; */ boolean getEnableModelWarmup(); } /** *
   * Configuration parameters for a SessionBundle, with optional batching.
   * 
* * Protobuf type {@code tensorflow.serving.SessionBundleConfig} */ public static final class SessionBundleConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.serving.SessionBundleConfig) SessionBundleConfigOrBuilder { private static final long serialVersionUID = 0L; // Use SessionBundleConfig.newBuilder() to construct. private SessionBundleConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private SessionBundleConfig() { sessionTarget_ = ""; experimentalTransientRamBytesDuringLoad_ = 0L; savedModelTags_ = com.google.protobuf.LazyStringArrayList.EMPTY; experimentalFixedInputTensors_ = java.util.Collections.emptyList(); enableModelWarmup_ = false; } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private SessionBundleConfig( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { java.lang.String s = input.readStringRequireUtf8(); sessionTarget_ = s; break; } case 18: { org.tensorflow.framework.ConfigProto.Builder subBuilder = null; if (sessionConfig_ != null) { subBuilder = sessionConfig_.toBuilder(); } sessionConfig_ = input.readMessage(org.tensorflow.framework.ConfigProto.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(sessionConfig_); sessionConfig_ = subBuilder.buildPartial(); } break; } case 26: { tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.Builder subBuilder = null; if (batchingParameters_ != null) { subBuilder = batchingParameters_.toBuilder(); } batchingParameters_ = input.readMessage(tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(batchingParameters_); batchingParameters_ = subBuilder.buildPartial(); } break; } case 34: { com.google.protobuf.Int32Value.Builder subBuilder = null; if (sessionRunLoadThreadpoolIndex_ != null) { subBuilder = sessionRunLoadThreadpoolIndex_.toBuilder(); } sessionRunLoadThreadpoolIndex_ = input.readMessage(com.google.protobuf.Int32Value.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(sessionRunLoadThreadpoolIndex_); sessionRunLoadThreadpoolIndex_ = subBuilder.buildPartial(); } break; } case 40: { experimentalTransientRamBytesDuringLoad_ = input.readUInt64(); break; } case 50: { java.lang.String s = input.readStringRequireUtf8(); if (!((mutable_bitField0_ & 0x00000020) == 0x00000020)) { savedModelTags_ = new com.google.protobuf.LazyStringArrayList(); mutable_bitField0_ |= 0x00000020; } savedModelTags_.add(s); break; } case 6226: { if (!((mutable_bitField0_ & 0x00000040) == 0x00000040)) { experimentalFixedInputTensors_ = new java.util.ArrayList(); mutable_bitField0_ |= 0x00000040; } experimentalFixedInputTensors_.add( input.readMessage(org.tensorflow.framework.NamedTensorProto.parser(), extensionRegistry)); break; } case 6232: { enableModelWarmup_ = input.readBool(); break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { if (((mutable_bitField0_ & 0x00000020) == 0x00000020)) { savedModelTags_ = savedModelTags_.getUnmodifiableView(); } if (((mutable_bitField0_ & 0x00000040) == 0x00000040)) { experimentalFixedInputTensors_ = java.util.Collections.unmodifiableList(experimentalFixedInputTensors_); } this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.serving.SessionBundleConfigOuterClass.internal_static_tensorflow_serving_SessionBundleConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.serving.SessionBundleConfigOuterClass.internal_static_tensorflow_serving_SessionBundleConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig.class, tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig.Builder.class); } private int bitField0_; public static final int SESSION_TARGET_FIELD_NUMBER = 1; private volatile java.lang.Object sessionTarget_; /** *
     * The TensorFlow runtime to connect to.
     * See full documentation in tensorflow/core/public/session_options.h.
     * For single machine serving, we recommend using the empty string "", which
     * will configure the local TensorFlow runtime implementation. This provides
     * the best isolation currently available across multiple Session servables.
     * 
* * string session_target = 1; */ public java.lang.String getSessionTarget() { java.lang.Object ref = sessionTarget_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); sessionTarget_ = s; return s; } } /** *
     * The TensorFlow runtime to connect to.
     * See full documentation in tensorflow/core/public/session_options.h.
     * For single machine serving, we recommend using the empty string "", which
     * will configure the local TensorFlow runtime implementation. This provides
     * the best isolation currently available across multiple Session servables.
     * 
* * string session_target = 1; */ public com.google.protobuf.ByteString getSessionTargetBytes() { java.lang.Object ref = sessionTarget_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); sessionTarget_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int SESSION_CONFIG_FIELD_NUMBER = 2; private org.tensorflow.framework.ConfigProto sessionConfig_; /** *
     * TensorFlow Session configuration options.
     * See details at tensorflow/core/protobuf/config.proto.
     * 
* * .tensorflow.ConfigProto session_config = 2; */ public boolean hasSessionConfig() { return sessionConfig_ != null; } /** *
     * TensorFlow Session configuration options.
     * See details at tensorflow/core/protobuf/config.proto.
     * 
* * .tensorflow.ConfigProto session_config = 2; */ public org.tensorflow.framework.ConfigProto getSessionConfig() { return sessionConfig_ == null ? org.tensorflow.framework.ConfigProto.getDefaultInstance() : sessionConfig_; } /** *
     * TensorFlow Session configuration options.
     * See details at tensorflow/core/protobuf/config.proto.
     * 
* * .tensorflow.ConfigProto session_config = 2; */ public org.tensorflow.framework.ConfigProtoOrBuilder getSessionConfigOrBuilder() { return getSessionConfig(); } public static final int BATCHING_PARAMETERS_FIELD_NUMBER = 3; private tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters batchingParameters_; /** *
     * If set, each emitted session is wrapped with a layer that schedules Run()
     * calls in batches. The batching layer is transparent to the client
     * (implements the tensorflow::Session API).
     * IMPORTANT: With batching enabled, client threads will spend most of their
     * time blocked on Session::Run() calls, waiting for enough peer threads to
     * also call Session::Run() such that a large batch can be formed. For good
     * throughput, we recommend setting the number of client threads equal to
     * roughly twice the maximum batch size ('max_batch_size' below).
     * The batching layer uses a SharedBatchScheduler to coordinate batching
     * across multiple session servables emitted by this source adapter. A
     * BatchSchedulerRetrier is added on top of each batching session.
     * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ public boolean hasBatchingParameters() { return batchingParameters_ != null; } /** *
     * If set, each emitted session is wrapped with a layer that schedules Run()
     * calls in batches. The batching layer is transparent to the client
     * (implements the tensorflow::Session API).
     * IMPORTANT: With batching enabled, client threads will spend most of their
     * time blocked on Session::Run() calls, waiting for enough peer threads to
     * also call Session::Run() such that a large batch can be formed. For good
     * throughput, we recommend setting the number of client threads equal to
     * roughly twice the maximum batch size ('max_batch_size' below).
     * The batching layer uses a SharedBatchScheduler to coordinate batching
     * across multiple session servables emitted by this source adapter. A
     * BatchSchedulerRetrier is added on top of each batching session.
     * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ public tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters getBatchingParameters() { return batchingParameters_ == null ? tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.getDefaultInstance() : batchingParameters_; } /** *
     * If set, each emitted session is wrapped with a layer that schedules Run()
     * calls in batches. The batching layer is transparent to the client
     * (implements the tensorflow::Session API).
     * IMPORTANT: With batching enabled, client threads will spend most of their
     * time blocked on Session::Run() calls, waiting for enough peer threads to
     * also call Session::Run() such that a large batch can be formed. For good
     * throughput, we recommend setting the number of client threads equal to
     * roughly twice the maximum batch size ('max_batch_size' below).
     * The batching layer uses a SharedBatchScheduler to coordinate batching
     * across multiple session servables emitted by this source adapter. A
     * BatchSchedulerRetrier is added on top of each batching session.
     * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ public tensorflow.serving.SessionBundleConfigOuterClass.BatchingParametersOrBuilder getBatchingParametersOrBuilder() { return getBatchingParameters(); } public static final int SESSION_RUN_LOAD_THREADPOOL_INDEX_FIELD_NUMBER = 4; private com.google.protobuf.Int32Value sessionRunLoadThreadpoolIndex_; /** *
     * If set, session run calls use a separate threadpool for restore and init
     * ops as part of loading the session-bundle. The value of this field should
     * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
     * part of `session_config.session_inter_op_thread_pool`.
     * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ public boolean hasSessionRunLoadThreadpoolIndex() { return sessionRunLoadThreadpoolIndex_ != null; } /** *
     * If set, session run calls use a separate threadpool for restore and init
     * ops as part of loading the session-bundle. The value of this field should
     * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
     * part of `session_config.session_inter_op_thread_pool`.
     * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ public com.google.protobuf.Int32Value getSessionRunLoadThreadpoolIndex() { return sessionRunLoadThreadpoolIndex_ == null ? com.google.protobuf.Int32Value.getDefaultInstance() : sessionRunLoadThreadpoolIndex_; } /** *
     * If set, session run calls use a separate threadpool for restore and init
     * ops as part of loading the session-bundle. The value of this field should
     * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
     * part of `session_config.session_inter_op_thread_pool`.
     * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ public com.google.protobuf.Int32ValueOrBuilder getSessionRunLoadThreadpoolIndexOrBuilder() { return getSessionRunLoadThreadpoolIndex(); } public static final int EXPERIMENTAL_TRANSIENT_RAM_BYTES_DURING_LOAD_FIELD_NUMBER = 5; private long experimentalTransientRamBytesDuringLoad_; /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Transient memory used while loading a model, which is released once the
     * loading phase has completed. (This is on top of the memory used in steady-
     * state while the model is in memory after it has finished loading.)
     * TODO(b/38376838): This is a temporary hack, and it applies to all models.
     * Remove it once resource estimates are moved inside SavedModel.
     * 
* * uint64 experimental_transient_ram_bytes_during_load = 5; */ public long getExperimentalTransientRamBytesDuringLoad() { return experimentalTransientRamBytesDuringLoad_; } public static final int SAVED_MODEL_TAGS_FIELD_NUMBER = 6; private com.google.protobuf.LazyStringList savedModelTags_; /** *
     * Set of SavedModel tags identifying the specific meta graph def to be
     * loaded.
     * 
* * repeated string saved_model_tags = 6; */ public com.google.protobuf.ProtocolStringList getSavedModelTagsList() { return savedModelTags_; } /** *
     * Set of SavedModel tags identifying the specific meta graph def to be
     * loaded.
     * 
* * repeated string saved_model_tags = 6; */ public int getSavedModelTagsCount() { return savedModelTags_.size(); } /** *
     * Set of SavedModel tags identifying the specific meta graph def to be
     * loaded.
     * 
* * repeated string saved_model_tags = 6; */ public java.lang.String getSavedModelTags(int index) { return savedModelTags_.get(index); } /** *
     * Set of SavedModel tags identifying the specific meta graph def to be
     * loaded.
     * 
* * repeated string saved_model_tags = 6; */ public com.google.protobuf.ByteString getSavedModelTagsBytes(int index) { return savedModelTags_.getByteString(index); } public static final int EXPERIMENTAL_FIXED_INPUT_TENSORS_FIELD_NUMBER = 778; private java.util.List experimentalFixedInputTensors_; /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Input tensors to append to every Session::Run() call.
     * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public java.util.List getExperimentalFixedInputTensorsList() { return experimentalFixedInputTensors_; } /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Input tensors to append to every Session::Run() call.
     * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public java.util.List getExperimentalFixedInputTensorsOrBuilderList() { return experimentalFixedInputTensors_; } /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Input tensors to append to every Session::Run() call.
     * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public int getExperimentalFixedInputTensorsCount() { return experimentalFixedInputTensors_.size(); } /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Input tensors to append to every Session::Run() call.
     * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public org.tensorflow.framework.NamedTensorProto getExperimentalFixedInputTensors(int index) { return experimentalFixedInputTensors_.get(index); } /** *
     * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
     * Input tensors to append to every Session::Run() call.
     * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public org.tensorflow.framework.NamedTensorProtoOrBuilder getExperimentalFixedInputTensorsOrBuilder( int index) { return experimentalFixedInputTensors_.get(index); } public static final int ENABLE_MODEL_WARMUP_FIELD_NUMBER = 779; private boolean enableModelWarmup_; /** *
     * Enables model warmup.
     * 
* * bool enable_model_warmup = 779; */ public boolean getEnableModelWarmup() { return enableModelWarmup_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (!getSessionTargetBytes().isEmpty()) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, sessionTarget_); } if (sessionConfig_ != null) { output.writeMessage(2, getSessionConfig()); } if (batchingParameters_ != null) { output.writeMessage(3, getBatchingParameters()); } if (sessionRunLoadThreadpoolIndex_ != null) { output.writeMessage(4, getSessionRunLoadThreadpoolIndex()); } if (experimentalTransientRamBytesDuringLoad_ != 0L) { output.writeUInt64(5, experimentalTransientRamBytesDuringLoad_); } for (int i = 0; i < savedModelTags_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 6, savedModelTags_.getRaw(i)); } for (int i = 0; i < experimentalFixedInputTensors_.size(); i++) { output.writeMessage(778, experimentalFixedInputTensors_.get(i)); } if (enableModelWarmup_ != false) { output.writeBool(779, enableModelWarmup_); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (!getSessionTargetBytes().isEmpty()) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, sessionTarget_); } if (sessionConfig_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, getSessionConfig()); } if (batchingParameters_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(3, getBatchingParameters()); } if (sessionRunLoadThreadpoolIndex_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(4, getSessionRunLoadThreadpoolIndex()); } if (experimentalTransientRamBytesDuringLoad_ != 0L) { size += com.google.protobuf.CodedOutputStream .computeUInt64Size(5, experimentalTransientRamBytesDuringLoad_); } { int dataSize = 0; for (int i = 0; i < savedModelTags_.size(); i++) { dataSize += computeStringSizeNoTag(savedModelTags_.getRaw(i)); } size += dataSize; size += 1 * getSavedModelTagsList().size(); } for (int i = 0; i < experimentalFixedInputTensors_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(778, experimentalFixedInputTensors_.get(i)); } if (enableModelWarmup_ != false) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(779, enableModelWarmup_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig)) { return super.equals(obj); } tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig other = (tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig) obj; boolean result = true; result = result && getSessionTarget() .equals(other.getSessionTarget()); result = result && (hasSessionConfig() == other.hasSessionConfig()); if (hasSessionConfig()) { result = result && getSessionConfig() .equals(other.getSessionConfig()); } result = result && (hasBatchingParameters() == other.hasBatchingParameters()); if (hasBatchingParameters()) { result = result && getBatchingParameters() .equals(other.getBatchingParameters()); } result = result && (hasSessionRunLoadThreadpoolIndex() == other.hasSessionRunLoadThreadpoolIndex()); if (hasSessionRunLoadThreadpoolIndex()) { result = result && getSessionRunLoadThreadpoolIndex() .equals(other.getSessionRunLoadThreadpoolIndex()); } result = result && (getExperimentalTransientRamBytesDuringLoad() == other.getExperimentalTransientRamBytesDuringLoad()); result = result && getSavedModelTagsList() .equals(other.getSavedModelTagsList()); result = result && getExperimentalFixedInputTensorsList() .equals(other.getExperimentalFixedInputTensorsList()); result = result && (getEnableModelWarmup() == other.getEnableModelWarmup()); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + SESSION_TARGET_FIELD_NUMBER; hash = (53 * hash) + getSessionTarget().hashCode(); if (hasSessionConfig()) { hash = (37 * hash) + SESSION_CONFIG_FIELD_NUMBER; hash = (53 * hash) + getSessionConfig().hashCode(); } if (hasBatchingParameters()) { hash = (37 * hash) + BATCHING_PARAMETERS_FIELD_NUMBER; hash = (53 * hash) + getBatchingParameters().hashCode(); } if (hasSessionRunLoadThreadpoolIndex()) { hash = (37 * hash) + SESSION_RUN_LOAD_THREADPOOL_INDEX_FIELD_NUMBER; hash = (53 * hash) + getSessionRunLoadThreadpoolIndex().hashCode(); } hash = (37 * hash) + EXPERIMENTAL_TRANSIENT_RAM_BYTES_DURING_LOAD_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getExperimentalTransientRamBytesDuringLoad()); if (getSavedModelTagsCount() > 0) { hash = (37 * hash) + SAVED_MODEL_TAGS_FIELD_NUMBER; hash = (53 * hash) + getSavedModelTagsList().hashCode(); } if (getExperimentalFixedInputTensorsCount() > 0) { hash = (37 * hash) + EXPERIMENTAL_FIXED_INPUT_TENSORS_FIELD_NUMBER; hash = (53 * hash) + getExperimentalFixedInputTensorsList().hashCode(); } hash = (37 * hash) + ENABLE_MODEL_WARMUP_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getEnableModelWarmup()); hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Configuration parameters for a SessionBundle, with optional batching.
     * 
* * Protobuf type {@code tensorflow.serving.SessionBundleConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.serving.SessionBundleConfig) tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.serving.SessionBundleConfigOuterClass.internal_static_tensorflow_serving_SessionBundleConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.serving.SessionBundleConfigOuterClass.internal_static_tensorflow_serving_SessionBundleConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig.class, tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig.Builder.class); } // Construct using tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getExperimentalFixedInputTensorsFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); sessionTarget_ = ""; if (sessionConfigBuilder_ == null) { sessionConfig_ = null; } else { sessionConfig_ = null; sessionConfigBuilder_ = null; } if (batchingParametersBuilder_ == null) { batchingParameters_ = null; } else { batchingParameters_ = null; batchingParametersBuilder_ = null; } if (sessionRunLoadThreadpoolIndexBuilder_ == null) { sessionRunLoadThreadpoolIndex_ = null; } else { sessionRunLoadThreadpoolIndex_ = null; sessionRunLoadThreadpoolIndexBuilder_ = null; } experimentalTransientRamBytesDuringLoad_ = 0L; savedModelTags_ = com.google.protobuf.LazyStringArrayList.EMPTY; bitField0_ = (bitField0_ & ~0x00000020); if (experimentalFixedInputTensorsBuilder_ == null) { experimentalFixedInputTensors_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000040); } else { experimentalFixedInputTensorsBuilder_.clear(); } enableModelWarmup_ = false; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return tensorflow.serving.SessionBundleConfigOuterClass.internal_static_tensorflow_serving_SessionBundleConfig_descriptor; } @java.lang.Override public tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig getDefaultInstanceForType() { return tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig.getDefaultInstance(); } @java.lang.Override public tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig build() { tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig buildPartial() { tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig result = new tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig(this); int from_bitField0_ = bitField0_; int to_bitField0_ = 0; result.sessionTarget_ = sessionTarget_; if (sessionConfigBuilder_ == null) { result.sessionConfig_ = sessionConfig_; } else { result.sessionConfig_ = sessionConfigBuilder_.build(); } if (batchingParametersBuilder_ == null) { result.batchingParameters_ = batchingParameters_; } else { result.batchingParameters_ = batchingParametersBuilder_.build(); } if (sessionRunLoadThreadpoolIndexBuilder_ == null) { result.sessionRunLoadThreadpoolIndex_ = sessionRunLoadThreadpoolIndex_; } else { result.sessionRunLoadThreadpoolIndex_ = sessionRunLoadThreadpoolIndexBuilder_.build(); } result.experimentalTransientRamBytesDuringLoad_ = experimentalTransientRamBytesDuringLoad_; if (((bitField0_ & 0x00000020) == 0x00000020)) { savedModelTags_ = savedModelTags_.getUnmodifiableView(); bitField0_ = (bitField0_ & ~0x00000020); } result.savedModelTags_ = savedModelTags_; if (experimentalFixedInputTensorsBuilder_ == null) { if (((bitField0_ & 0x00000040) == 0x00000040)) { experimentalFixedInputTensors_ = java.util.Collections.unmodifiableList(experimentalFixedInputTensors_); bitField0_ = (bitField0_ & ~0x00000040); } result.experimentalFixedInputTensors_ = experimentalFixedInputTensors_; } else { result.experimentalFixedInputTensors_ = experimentalFixedInputTensorsBuilder_.build(); } result.enableModelWarmup_ = enableModelWarmup_; result.bitField0_ = to_bitField0_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig) { return mergeFrom((tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig other) { if (other == tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig.getDefaultInstance()) return this; if (!other.getSessionTarget().isEmpty()) { sessionTarget_ = other.sessionTarget_; onChanged(); } if (other.hasSessionConfig()) { mergeSessionConfig(other.getSessionConfig()); } if (other.hasBatchingParameters()) { mergeBatchingParameters(other.getBatchingParameters()); } if (other.hasSessionRunLoadThreadpoolIndex()) { mergeSessionRunLoadThreadpoolIndex(other.getSessionRunLoadThreadpoolIndex()); } if (other.getExperimentalTransientRamBytesDuringLoad() != 0L) { setExperimentalTransientRamBytesDuringLoad(other.getExperimentalTransientRamBytesDuringLoad()); } if (!other.savedModelTags_.isEmpty()) { if (savedModelTags_.isEmpty()) { savedModelTags_ = other.savedModelTags_; bitField0_ = (bitField0_ & ~0x00000020); } else { ensureSavedModelTagsIsMutable(); savedModelTags_.addAll(other.savedModelTags_); } onChanged(); } if (experimentalFixedInputTensorsBuilder_ == null) { if (!other.experimentalFixedInputTensors_.isEmpty()) { if (experimentalFixedInputTensors_.isEmpty()) { experimentalFixedInputTensors_ = other.experimentalFixedInputTensors_; bitField0_ = (bitField0_ & ~0x00000040); } else { ensureExperimentalFixedInputTensorsIsMutable(); experimentalFixedInputTensors_.addAll(other.experimentalFixedInputTensors_); } onChanged(); } } else { if (!other.experimentalFixedInputTensors_.isEmpty()) { if (experimentalFixedInputTensorsBuilder_.isEmpty()) { experimentalFixedInputTensorsBuilder_.dispose(); experimentalFixedInputTensorsBuilder_ = null; experimentalFixedInputTensors_ = other.experimentalFixedInputTensors_; bitField0_ = (bitField0_ & ~0x00000040); experimentalFixedInputTensorsBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getExperimentalFixedInputTensorsFieldBuilder() : null; } else { experimentalFixedInputTensorsBuilder_.addAllMessages(other.experimentalFixedInputTensors_); } } } if (other.getEnableModelWarmup() != false) { setEnableModelWarmup(other.getEnableModelWarmup()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int bitField0_; private java.lang.Object sessionTarget_ = ""; /** *
       * The TensorFlow runtime to connect to.
       * See full documentation in tensorflow/core/public/session_options.h.
       * For single machine serving, we recommend using the empty string "", which
       * will configure the local TensorFlow runtime implementation. This provides
       * the best isolation currently available across multiple Session servables.
       * 
* * string session_target = 1; */ public java.lang.String getSessionTarget() { java.lang.Object ref = sessionTarget_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); sessionTarget_ = s; return s; } else { return (java.lang.String) ref; } } /** *
       * The TensorFlow runtime to connect to.
       * See full documentation in tensorflow/core/public/session_options.h.
       * For single machine serving, we recommend using the empty string "", which
       * will configure the local TensorFlow runtime implementation. This provides
       * the best isolation currently available across multiple Session servables.
       * 
* * string session_target = 1; */ public com.google.protobuf.ByteString getSessionTargetBytes() { java.lang.Object ref = sessionTarget_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); sessionTarget_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * The TensorFlow runtime to connect to.
       * See full documentation in tensorflow/core/public/session_options.h.
       * For single machine serving, we recommend using the empty string "", which
       * will configure the local TensorFlow runtime implementation. This provides
       * the best isolation currently available across multiple Session servables.
       * 
* * string session_target = 1; */ public Builder setSessionTarget( java.lang.String value) { if (value == null) { throw new NullPointerException(); } sessionTarget_ = value; onChanged(); return this; } /** *
       * The TensorFlow runtime to connect to.
       * See full documentation in tensorflow/core/public/session_options.h.
       * For single machine serving, we recommend using the empty string "", which
       * will configure the local TensorFlow runtime implementation. This provides
       * the best isolation currently available across multiple Session servables.
       * 
* * string session_target = 1; */ public Builder clearSessionTarget() { sessionTarget_ = getDefaultInstance().getSessionTarget(); onChanged(); return this; } /** *
       * The TensorFlow runtime to connect to.
       * See full documentation in tensorflow/core/public/session_options.h.
       * For single machine serving, we recommend using the empty string "", which
       * will configure the local TensorFlow runtime implementation. This provides
       * the best isolation currently available across multiple Session servables.
       * 
* * string session_target = 1; */ public Builder setSessionTargetBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); sessionTarget_ = value; onChanged(); return this; } private org.tensorflow.framework.ConfigProto sessionConfig_ = null; private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.ConfigProto, org.tensorflow.framework.ConfigProto.Builder, org.tensorflow.framework.ConfigProtoOrBuilder> sessionConfigBuilder_; /** *
       * TensorFlow Session configuration options.
       * See details at tensorflow/core/protobuf/config.proto.
       * 
* * .tensorflow.ConfigProto session_config = 2; */ public boolean hasSessionConfig() { return sessionConfigBuilder_ != null || sessionConfig_ != null; } /** *
       * TensorFlow Session configuration options.
       * See details at tensorflow/core/protobuf/config.proto.
       * 
* * .tensorflow.ConfigProto session_config = 2; */ public org.tensorflow.framework.ConfigProto getSessionConfig() { if (sessionConfigBuilder_ == null) { return sessionConfig_ == null ? org.tensorflow.framework.ConfigProto.getDefaultInstance() : sessionConfig_; } else { return sessionConfigBuilder_.getMessage(); } } /** *
       * TensorFlow Session configuration options.
       * See details at tensorflow/core/protobuf/config.proto.
       * 
* * .tensorflow.ConfigProto session_config = 2; */ public Builder setSessionConfig(org.tensorflow.framework.ConfigProto value) { if (sessionConfigBuilder_ == null) { if (value == null) { throw new NullPointerException(); } sessionConfig_ = value; onChanged(); } else { sessionConfigBuilder_.setMessage(value); } return this; } /** *
       * TensorFlow Session configuration options.
       * See details at tensorflow/core/protobuf/config.proto.
       * 
* * .tensorflow.ConfigProto session_config = 2; */ public Builder setSessionConfig( org.tensorflow.framework.ConfigProto.Builder builderForValue) { if (sessionConfigBuilder_ == null) { sessionConfig_ = builderForValue.build(); onChanged(); } else { sessionConfigBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * TensorFlow Session configuration options.
       * See details at tensorflow/core/protobuf/config.proto.
       * 
* * .tensorflow.ConfigProto session_config = 2; */ public Builder mergeSessionConfig(org.tensorflow.framework.ConfigProto value) { if (sessionConfigBuilder_ == null) { if (sessionConfig_ != null) { sessionConfig_ = org.tensorflow.framework.ConfigProto.newBuilder(sessionConfig_).mergeFrom(value).buildPartial(); } else { sessionConfig_ = value; } onChanged(); } else { sessionConfigBuilder_.mergeFrom(value); } return this; } /** *
       * TensorFlow Session configuration options.
       * See details at tensorflow/core/protobuf/config.proto.
       * 
* * .tensorflow.ConfigProto session_config = 2; */ public Builder clearSessionConfig() { if (sessionConfigBuilder_ == null) { sessionConfig_ = null; onChanged(); } else { sessionConfig_ = null; sessionConfigBuilder_ = null; } return this; } /** *
       * TensorFlow Session configuration options.
       * See details at tensorflow/core/protobuf/config.proto.
       * 
* * .tensorflow.ConfigProto session_config = 2; */ public org.tensorflow.framework.ConfigProto.Builder getSessionConfigBuilder() { onChanged(); return getSessionConfigFieldBuilder().getBuilder(); } /** *
       * TensorFlow Session configuration options.
       * See details at tensorflow/core/protobuf/config.proto.
       * 
* * .tensorflow.ConfigProto session_config = 2; */ public org.tensorflow.framework.ConfigProtoOrBuilder getSessionConfigOrBuilder() { if (sessionConfigBuilder_ != null) { return sessionConfigBuilder_.getMessageOrBuilder(); } else { return sessionConfig_ == null ? org.tensorflow.framework.ConfigProto.getDefaultInstance() : sessionConfig_; } } /** *
       * TensorFlow Session configuration options.
       * See details at tensorflow/core/protobuf/config.proto.
       * 
* * .tensorflow.ConfigProto session_config = 2; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.ConfigProto, org.tensorflow.framework.ConfigProto.Builder, org.tensorflow.framework.ConfigProtoOrBuilder> getSessionConfigFieldBuilder() { if (sessionConfigBuilder_ == null) { sessionConfigBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.ConfigProto, org.tensorflow.framework.ConfigProto.Builder, org.tensorflow.framework.ConfigProtoOrBuilder>( getSessionConfig(), getParentForChildren(), isClean()); sessionConfig_ = null; } return sessionConfigBuilder_; } private tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters batchingParameters_ = null; private com.google.protobuf.SingleFieldBuilderV3< tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters, tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.Builder, tensorflow.serving.SessionBundleConfigOuterClass.BatchingParametersOrBuilder> batchingParametersBuilder_; /** *
       * If set, each emitted session is wrapped with a layer that schedules Run()
       * calls in batches. The batching layer is transparent to the client
       * (implements the tensorflow::Session API).
       * IMPORTANT: With batching enabled, client threads will spend most of their
       * time blocked on Session::Run() calls, waiting for enough peer threads to
       * also call Session::Run() such that a large batch can be formed. For good
       * throughput, we recommend setting the number of client threads equal to
       * roughly twice the maximum batch size ('max_batch_size' below).
       * The batching layer uses a SharedBatchScheduler to coordinate batching
       * across multiple session servables emitted by this source adapter. A
       * BatchSchedulerRetrier is added on top of each batching session.
       * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ public boolean hasBatchingParameters() { return batchingParametersBuilder_ != null || batchingParameters_ != null; } /** *
       * If set, each emitted session is wrapped with a layer that schedules Run()
       * calls in batches. The batching layer is transparent to the client
       * (implements the tensorflow::Session API).
       * IMPORTANT: With batching enabled, client threads will spend most of their
       * time blocked on Session::Run() calls, waiting for enough peer threads to
       * also call Session::Run() such that a large batch can be formed. For good
       * throughput, we recommend setting the number of client threads equal to
       * roughly twice the maximum batch size ('max_batch_size' below).
       * The batching layer uses a SharedBatchScheduler to coordinate batching
       * across multiple session servables emitted by this source adapter. A
       * BatchSchedulerRetrier is added on top of each batching session.
       * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ public tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters getBatchingParameters() { if (batchingParametersBuilder_ == null) { return batchingParameters_ == null ? tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.getDefaultInstance() : batchingParameters_; } else { return batchingParametersBuilder_.getMessage(); } } /** *
       * If set, each emitted session is wrapped with a layer that schedules Run()
       * calls in batches. The batching layer is transparent to the client
       * (implements the tensorflow::Session API).
       * IMPORTANT: With batching enabled, client threads will spend most of their
       * time blocked on Session::Run() calls, waiting for enough peer threads to
       * also call Session::Run() such that a large batch can be formed. For good
       * throughput, we recommend setting the number of client threads equal to
       * roughly twice the maximum batch size ('max_batch_size' below).
       * The batching layer uses a SharedBatchScheduler to coordinate batching
       * across multiple session servables emitted by this source adapter. A
       * BatchSchedulerRetrier is added on top of each batching session.
       * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ public Builder setBatchingParameters(tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters value) { if (batchingParametersBuilder_ == null) { if (value == null) { throw new NullPointerException(); } batchingParameters_ = value; onChanged(); } else { batchingParametersBuilder_.setMessage(value); } return this; } /** *
       * If set, each emitted session is wrapped with a layer that schedules Run()
       * calls in batches. The batching layer is transparent to the client
       * (implements the tensorflow::Session API).
       * IMPORTANT: With batching enabled, client threads will spend most of their
       * time blocked on Session::Run() calls, waiting for enough peer threads to
       * also call Session::Run() such that a large batch can be formed. For good
       * throughput, we recommend setting the number of client threads equal to
       * roughly twice the maximum batch size ('max_batch_size' below).
       * The batching layer uses a SharedBatchScheduler to coordinate batching
       * across multiple session servables emitted by this source adapter. A
       * BatchSchedulerRetrier is added on top of each batching session.
       * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ public Builder setBatchingParameters( tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.Builder builderForValue) { if (batchingParametersBuilder_ == null) { batchingParameters_ = builderForValue.build(); onChanged(); } else { batchingParametersBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * If set, each emitted session is wrapped with a layer that schedules Run()
       * calls in batches. The batching layer is transparent to the client
       * (implements the tensorflow::Session API).
       * IMPORTANT: With batching enabled, client threads will spend most of their
       * time blocked on Session::Run() calls, waiting for enough peer threads to
       * also call Session::Run() such that a large batch can be formed. For good
       * throughput, we recommend setting the number of client threads equal to
       * roughly twice the maximum batch size ('max_batch_size' below).
       * The batching layer uses a SharedBatchScheduler to coordinate batching
       * across multiple session servables emitted by this source adapter. A
       * BatchSchedulerRetrier is added on top of each batching session.
       * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ public Builder mergeBatchingParameters(tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters value) { if (batchingParametersBuilder_ == null) { if (batchingParameters_ != null) { batchingParameters_ = tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.newBuilder(batchingParameters_).mergeFrom(value).buildPartial(); } else { batchingParameters_ = value; } onChanged(); } else { batchingParametersBuilder_.mergeFrom(value); } return this; } /** *
       * If set, each emitted session is wrapped with a layer that schedules Run()
       * calls in batches. The batching layer is transparent to the client
       * (implements the tensorflow::Session API).
       * IMPORTANT: With batching enabled, client threads will spend most of their
       * time blocked on Session::Run() calls, waiting for enough peer threads to
       * also call Session::Run() such that a large batch can be formed. For good
       * throughput, we recommend setting the number of client threads equal to
       * roughly twice the maximum batch size ('max_batch_size' below).
       * The batching layer uses a SharedBatchScheduler to coordinate batching
       * across multiple session servables emitted by this source adapter. A
       * BatchSchedulerRetrier is added on top of each batching session.
       * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ public Builder clearBatchingParameters() { if (batchingParametersBuilder_ == null) { batchingParameters_ = null; onChanged(); } else { batchingParameters_ = null; batchingParametersBuilder_ = null; } return this; } /** *
       * If set, each emitted session is wrapped with a layer that schedules Run()
       * calls in batches. The batching layer is transparent to the client
       * (implements the tensorflow::Session API).
       * IMPORTANT: With batching enabled, client threads will spend most of their
       * time blocked on Session::Run() calls, waiting for enough peer threads to
       * also call Session::Run() such that a large batch can be formed. For good
       * throughput, we recommend setting the number of client threads equal to
       * roughly twice the maximum batch size ('max_batch_size' below).
       * The batching layer uses a SharedBatchScheduler to coordinate batching
       * across multiple session servables emitted by this source adapter. A
       * BatchSchedulerRetrier is added on top of each batching session.
       * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ public tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.Builder getBatchingParametersBuilder() { onChanged(); return getBatchingParametersFieldBuilder().getBuilder(); } /** *
       * If set, each emitted session is wrapped with a layer that schedules Run()
       * calls in batches. The batching layer is transparent to the client
       * (implements the tensorflow::Session API).
       * IMPORTANT: With batching enabled, client threads will spend most of their
       * time blocked on Session::Run() calls, waiting for enough peer threads to
       * also call Session::Run() such that a large batch can be formed. For good
       * throughput, we recommend setting the number of client threads equal to
       * roughly twice the maximum batch size ('max_batch_size' below).
       * The batching layer uses a SharedBatchScheduler to coordinate batching
       * across multiple session servables emitted by this source adapter. A
       * BatchSchedulerRetrier is added on top of each batching session.
       * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ public tensorflow.serving.SessionBundleConfigOuterClass.BatchingParametersOrBuilder getBatchingParametersOrBuilder() { if (batchingParametersBuilder_ != null) { return batchingParametersBuilder_.getMessageOrBuilder(); } else { return batchingParameters_ == null ? tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.getDefaultInstance() : batchingParameters_; } } /** *
       * If set, each emitted session is wrapped with a layer that schedules Run()
       * calls in batches. The batching layer is transparent to the client
       * (implements the tensorflow::Session API).
       * IMPORTANT: With batching enabled, client threads will spend most of their
       * time blocked on Session::Run() calls, waiting for enough peer threads to
       * also call Session::Run() such that a large batch can be formed. For good
       * throughput, we recommend setting the number of client threads equal to
       * roughly twice the maximum batch size ('max_batch_size' below).
       * The batching layer uses a SharedBatchScheduler to coordinate batching
       * across multiple session servables emitted by this source adapter. A
       * BatchSchedulerRetrier is added on top of each batching session.
       * 
* * .tensorflow.serving.BatchingParameters batching_parameters = 3; */ private com.google.protobuf.SingleFieldBuilderV3< tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters, tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.Builder, tensorflow.serving.SessionBundleConfigOuterClass.BatchingParametersOrBuilder> getBatchingParametersFieldBuilder() { if (batchingParametersBuilder_ == null) { batchingParametersBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters, tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.Builder, tensorflow.serving.SessionBundleConfigOuterClass.BatchingParametersOrBuilder>( getBatchingParameters(), getParentForChildren(), isClean()); batchingParameters_ = null; } return batchingParametersBuilder_; } private com.google.protobuf.Int32Value sessionRunLoadThreadpoolIndex_ = null; private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int32Value, com.google.protobuf.Int32Value.Builder, com.google.protobuf.Int32ValueOrBuilder> sessionRunLoadThreadpoolIndexBuilder_; /** *
       * If set, session run calls use a separate threadpool for restore and init
       * ops as part of loading the session-bundle. The value of this field should
       * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
       * part of `session_config.session_inter_op_thread_pool`.
       * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ public boolean hasSessionRunLoadThreadpoolIndex() { return sessionRunLoadThreadpoolIndexBuilder_ != null || sessionRunLoadThreadpoolIndex_ != null; } /** *
       * If set, session run calls use a separate threadpool for restore and init
       * ops as part of loading the session-bundle. The value of this field should
       * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
       * part of `session_config.session_inter_op_thread_pool`.
       * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ public com.google.protobuf.Int32Value getSessionRunLoadThreadpoolIndex() { if (sessionRunLoadThreadpoolIndexBuilder_ == null) { return sessionRunLoadThreadpoolIndex_ == null ? com.google.protobuf.Int32Value.getDefaultInstance() : sessionRunLoadThreadpoolIndex_; } else { return sessionRunLoadThreadpoolIndexBuilder_.getMessage(); } } /** *
       * If set, session run calls use a separate threadpool for restore and init
       * ops as part of loading the session-bundle. The value of this field should
       * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
       * part of `session_config.session_inter_op_thread_pool`.
       * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ public Builder setSessionRunLoadThreadpoolIndex(com.google.protobuf.Int32Value value) { if (sessionRunLoadThreadpoolIndexBuilder_ == null) { if (value == null) { throw new NullPointerException(); } sessionRunLoadThreadpoolIndex_ = value; onChanged(); } else { sessionRunLoadThreadpoolIndexBuilder_.setMessage(value); } return this; } /** *
       * If set, session run calls use a separate threadpool for restore and init
       * ops as part of loading the session-bundle. The value of this field should
       * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
       * part of `session_config.session_inter_op_thread_pool`.
       * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ public Builder setSessionRunLoadThreadpoolIndex( com.google.protobuf.Int32Value.Builder builderForValue) { if (sessionRunLoadThreadpoolIndexBuilder_ == null) { sessionRunLoadThreadpoolIndex_ = builderForValue.build(); onChanged(); } else { sessionRunLoadThreadpoolIndexBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * If set, session run calls use a separate threadpool for restore and init
       * ops as part of loading the session-bundle. The value of this field should
       * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
       * part of `session_config.session_inter_op_thread_pool`.
       * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ public Builder mergeSessionRunLoadThreadpoolIndex(com.google.protobuf.Int32Value value) { if (sessionRunLoadThreadpoolIndexBuilder_ == null) { if (sessionRunLoadThreadpoolIndex_ != null) { sessionRunLoadThreadpoolIndex_ = com.google.protobuf.Int32Value.newBuilder(sessionRunLoadThreadpoolIndex_).mergeFrom(value).buildPartial(); } else { sessionRunLoadThreadpoolIndex_ = value; } onChanged(); } else { sessionRunLoadThreadpoolIndexBuilder_.mergeFrom(value); } return this; } /** *
       * If set, session run calls use a separate threadpool for restore and init
       * ops as part of loading the session-bundle. The value of this field should
       * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
       * part of `session_config.session_inter_op_thread_pool`.
       * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ public Builder clearSessionRunLoadThreadpoolIndex() { if (sessionRunLoadThreadpoolIndexBuilder_ == null) { sessionRunLoadThreadpoolIndex_ = null; onChanged(); } else { sessionRunLoadThreadpoolIndex_ = null; sessionRunLoadThreadpoolIndexBuilder_ = null; } return this; } /** *
       * If set, session run calls use a separate threadpool for restore and init
       * ops as part of loading the session-bundle. The value of this field should
       * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
       * part of `session_config.session_inter_op_thread_pool`.
       * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ public com.google.protobuf.Int32Value.Builder getSessionRunLoadThreadpoolIndexBuilder() { onChanged(); return getSessionRunLoadThreadpoolIndexFieldBuilder().getBuilder(); } /** *
       * If set, session run calls use a separate threadpool for restore and init
       * ops as part of loading the session-bundle. The value of this field should
       * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
       * part of `session_config.session_inter_op_thread_pool`.
       * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ public com.google.protobuf.Int32ValueOrBuilder getSessionRunLoadThreadpoolIndexOrBuilder() { if (sessionRunLoadThreadpoolIndexBuilder_ != null) { return sessionRunLoadThreadpoolIndexBuilder_.getMessageOrBuilder(); } else { return sessionRunLoadThreadpoolIndex_ == null ? com.google.protobuf.Int32Value.getDefaultInstance() : sessionRunLoadThreadpoolIndex_; } } /** *
       * If set, session run calls use a separate threadpool for restore and init
       * ops as part of loading the session-bundle. The value of this field should
       * correspond to the index of the tensorflow::ThreadPoolOptionProto defined as
       * part of `session_config.session_inter_op_thread_pool`.
       * 
* * .google.protobuf.Int32Value session_run_load_threadpool_index = 4; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int32Value, com.google.protobuf.Int32Value.Builder, com.google.protobuf.Int32ValueOrBuilder> getSessionRunLoadThreadpoolIndexFieldBuilder() { if (sessionRunLoadThreadpoolIndexBuilder_ == null) { sessionRunLoadThreadpoolIndexBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int32Value, com.google.protobuf.Int32Value.Builder, com.google.protobuf.Int32ValueOrBuilder>( getSessionRunLoadThreadpoolIndex(), getParentForChildren(), isClean()); sessionRunLoadThreadpoolIndex_ = null; } return sessionRunLoadThreadpoolIndexBuilder_; } private long experimentalTransientRamBytesDuringLoad_ ; /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Transient memory used while loading a model, which is released once the
       * loading phase has completed. (This is on top of the memory used in steady-
       * state while the model is in memory after it has finished loading.)
       * TODO(b/38376838): This is a temporary hack, and it applies to all models.
       * Remove it once resource estimates are moved inside SavedModel.
       * 
* * uint64 experimental_transient_ram_bytes_during_load = 5; */ public long getExperimentalTransientRamBytesDuringLoad() { return experimentalTransientRamBytesDuringLoad_; } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Transient memory used while loading a model, which is released once the
       * loading phase has completed. (This is on top of the memory used in steady-
       * state while the model is in memory after it has finished loading.)
       * TODO(b/38376838): This is a temporary hack, and it applies to all models.
       * Remove it once resource estimates are moved inside SavedModel.
       * 
* * uint64 experimental_transient_ram_bytes_during_load = 5; */ public Builder setExperimentalTransientRamBytesDuringLoad(long value) { experimentalTransientRamBytesDuringLoad_ = value; onChanged(); return this; } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Transient memory used while loading a model, which is released once the
       * loading phase has completed. (This is on top of the memory used in steady-
       * state while the model is in memory after it has finished loading.)
       * TODO(b/38376838): This is a temporary hack, and it applies to all models.
       * Remove it once resource estimates are moved inside SavedModel.
       * 
* * uint64 experimental_transient_ram_bytes_during_load = 5; */ public Builder clearExperimentalTransientRamBytesDuringLoad() { experimentalTransientRamBytesDuringLoad_ = 0L; onChanged(); return this; } private com.google.protobuf.LazyStringList savedModelTags_ = com.google.protobuf.LazyStringArrayList.EMPTY; private void ensureSavedModelTagsIsMutable() { if (!((bitField0_ & 0x00000020) == 0x00000020)) { savedModelTags_ = new com.google.protobuf.LazyStringArrayList(savedModelTags_); bitField0_ |= 0x00000020; } } /** *
       * Set of SavedModel tags identifying the specific meta graph def to be
       * loaded.
       * 
* * repeated string saved_model_tags = 6; */ public com.google.protobuf.ProtocolStringList getSavedModelTagsList() { return savedModelTags_.getUnmodifiableView(); } /** *
       * Set of SavedModel tags identifying the specific meta graph def to be
       * loaded.
       * 
* * repeated string saved_model_tags = 6; */ public int getSavedModelTagsCount() { return savedModelTags_.size(); } /** *
       * Set of SavedModel tags identifying the specific meta graph def to be
       * loaded.
       * 
* * repeated string saved_model_tags = 6; */ public java.lang.String getSavedModelTags(int index) { return savedModelTags_.get(index); } /** *
       * Set of SavedModel tags identifying the specific meta graph def to be
       * loaded.
       * 
* * repeated string saved_model_tags = 6; */ public com.google.protobuf.ByteString getSavedModelTagsBytes(int index) { return savedModelTags_.getByteString(index); } /** *
       * Set of SavedModel tags identifying the specific meta graph def to be
       * loaded.
       * 
* * repeated string saved_model_tags = 6; */ public Builder setSavedModelTags( int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureSavedModelTagsIsMutable(); savedModelTags_.set(index, value); onChanged(); return this; } /** *
       * Set of SavedModel tags identifying the specific meta graph def to be
       * loaded.
       * 
* * repeated string saved_model_tags = 6; */ public Builder addSavedModelTags( java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureSavedModelTagsIsMutable(); savedModelTags_.add(value); onChanged(); return this; } /** *
       * Set of SavedModel tags identifying the specific meta graph def to be
       * loaded.
       * 
* * repeated string saved_model_tags = 6; */ public Builder addAllSavedModelTags( java.lang.Iterable values) { ensureSavedModelTagsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, savedModelTags_); onChanged(); return this; } /** *
       * Set of SavedModel tags identifying the specific meta graph def to be
       * loaded.
       * 
* * repeated string saved_model_tags = 6; */ public Builder clearSavedModelTags() { savedModelTags_ = com.google.protobuf.LazyStringArrayList.EMPTY; bitField0_ = (bitField0_ & ~0x00000020); onChanged(); return this; } /** *
       * Set of SavedModel tags identifying the specific meta graph def to be
       * loaded.
       * 
* * repeated string saved_model_tags = 6; */ public Builder addSavedModelTagsBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); ensureSavedModelTagsIsMutable(); savedModelTags_.add(value); onChanged(); return this; } private java.util.List experimentalFixedInputTensors_ = java.util.Collections.emptyList(); private void ensureExperimentalFixedInputTensorsIsMutable() { if (!((bitField0_ & 0x00000040) == 0x00000040)) { experimentalFixedInputTensors_ = new java.util.ArrayList(experimentalFixedInputTensors_); bitField0_ |= 0x00000040; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.NamedTensorProto, org.tensorflow.framework.NamedTensorProto.Builder, org.tensorflow.framework.NamedTensorProtoOrBuilder> experimentalFixedInputTensorsBuilder_; /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public java.util.List getExperimentalFixedInputTensorsList() { if (experimentalFixedInputTensorsBuilder_ == null) { return java.util.Collections.unmodifiableList(experimentalFixedInputTensors_); } else { return experimentalFixedInputTensorsBuilder_.getMessageList(); } } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public int getExperimentalFixedInputTensorsCount() { if (experimentalFixedInputTensorsBuilder_ == null) { return experimentalFixedInputTensors_.size(); } else { return experimentalFixedInputTensorsBuilder_.getCount(); } } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public org.tensorflow.framework.NamedTensorProto getExperimentalFixedInputTensors(int index) { if (experimentalFixedInputTensorsBuilder_ == null) { return experimentalFixedInputTensors_.get(index); } else { return experimentalFixedInputTensorsBuilder_.getMessage(index); } } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public Builder setExperimentalFixedInputTensors( int index, org.tensorflow.framework.NamedTensorProto value) { if (experimentalFixedInputTensorsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureExperimentalFixedInputTensorsIsMutable(); experimentalFixedInputTensors_.set(index, value); onChanged(); } else { experimentalFixedInputTensorsBuilder_.setMessage(index, value); } return this; } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public Builder setExperimentalFixedInputTensors( int index, org.tensorflow.framework.NamedTensorProto.Builder builderForValue) { if (experimentalFixedInputTensorsBuilder_ == null) { ensureExperimentalFixedInputTensorsIsMutable(); experimentalFixedInputTensors_.set(index, builderForValue.build()); onChanged(); } else { experimentalFixedInputTensorsBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public Builder addExperimentalFixedInputTensors(org.tensorflow.framework.NamedTensorProto value) { if (experimentalFixedInputTensorsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureExperimentalFixedInputTensorsIsMutable(); experimentalFixedInputTensors_.add(value); onChanged(); } else { experimentalFixedInputTensorsBuilder_.addMessage(value); } return this; } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public Builder addExperimentalFixedInputTensors( int index, org.tensorflow.framework.NamedTensorProto value) { if (experimentalFixedInputTensorsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureExperimentalFixedInputTensorsIsMutable(); experimentalFixedInputTensors_.add(index, value); onChanged(); } else { experimentalFixedInputTensorsBuilder_.addMessage(index, value); } return this; } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public Builder addExperimentalFixedInputTensors( org.tensorflow.framework.NamedTensorProto.Builder builderForValue) { if (experimentalFixedInputTensorsBuilder_ == null) { ensureExperimentalFixedInputTensorsIsMutable(); experimentalFixedInputTensors_.add(builderForValue.build()); onChanged(); } else { experimentalFixedInputTensorsBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public Builder addExperimentalFixedInputTensors( int index, org.tensorflow.framework.NamedTensorProto.Builder builderForValue) { if (experimentalFixedInputTensorsBuilder_ == null) { ensureExperimentalFixedInputTensorsIsMutable(); experimentalFixedInputTensors_.add(index, builderForValue.build()); onChanged(); } else { experimentalFixedInputTensorsBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public Builder addAllExperimentalFixedInputTensors( java.lang.Iterable values) { if (experimentalFixedInputTensorsBuilder_ == null) { ensureExperimentalFixedInputTensorsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, experimentalFixedInputTensors_); onChanged(); } else { experimentalFixedInputTensorsBuilder_.addAllMessages(values); } return this; } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public Builder clearExperimentalFixedInputTensors() { if (experimentalFixedInputTensorsBuilder_ == null) { experimentalFixedInputTensors_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000040); onChanged(); } else { experimentalFixedInputTensorsBuilder_.clear(); } return this; } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public Builder removeExperimentalFixedInputTensors(int index) { if (experimentalFixedInputTensorsBuilder_ == null) { ensureExperimentalFixedInputTensorsIsMutable(); experimentalFixedInputTensors_.remove(index); onChanged(); } else { experimentalFixedInputTensorsBuilder_.remove(index); } return this; } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public org.tensorflow.framework.NamedTensorProto.Builder getExperimentalFixedInputTensorsBuilder( int index) { return getExperimentalFixedInputTensorsFieldBuilder().getBuilder(index); } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public org.tensorflow.framework.NamedTensorProtoOrBuilder getExperimentalFixedInputTensorsOrBuilder( int index) { if (experimentalFixedInputTensorsBuilder_ == null) { return experimentalFixedInputTensors_.get(index); } else { return experimentalFixedInputTensorsBuilder_.getMessageOrBuilder(index); } } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public java.util.List getExperimentalFixedInputTensorsOrBuilderList() { if (experimentalFixedInputTensorsBuilder_ != null) { return experimentalFixedInputTensorsBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(experimentalFixedInputTensors_); } } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public org.tensorflow.framework.NamedTensorProto.Builder addExperimentalFixedInputTensorsBuilder() { return getExperimentalFixedInputTensorsFieldBuilder().addBuilder( org.tensorflow.framework.NamedTensorProto.getDefaultInstance()); } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public org.tensorflow.framework.NamedTensorProto.Builder addExperimentalFixedInputTensorsBuilder( int index) { return getExperimentalFixedInputTensorsFieldBuilder().addBuilder( index, org.tensorflow.framework.NamedTensorProto.getDefaultInstance()); } /** *
       * EXPERIMENTAL. THIS FIELD MAY CHANGE OR GO AWAY. USE WITH CAUTION.
       * Input tensors to append to every Session::Run() call.
       * 
* * repeated .tensorflow.NamedTensorProto experimental_fixed_input_tensors = 778; */ public java.util.List getExperimentalFixedInputTensorsBuilderList() { return getExperimentalFixedInputTensorsFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.NamedTensorProto, org.tensorflow.framework.NamedTensorProto.Builder, org.tensorflow.framework.NamedTensorProtoOrBuilder> getExperimentalFixedInputTensorsFieldBuilder() { if (experimentalFixedInputTensorsBuilder_ == null) { experimentalFixedInputTensorsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.NamedTensorProto, org.tensorflow.framework.NamedTensorProto.Builder, org.tensorflow.framework.NamedTensorProtoOrBuilder>( experimentalFixedInputTensors_, ((bitField0_ & 0x00000040) == 0x00000040), getParentForChildren(), isClean()); experimentalFixedInputTensors_ = null; } return experimentalFixedInputTensorsBuilder_; } private boolean enableModelWarmup_ ; /** *
       * Enables model warmup.
       * 
* * bool enable_model_warmup = 779; */ public boolean getEnableModelWarmup() { return enableModelWarmup_; } /** *
       * Enables model warmup.
       * 
* * bool enable_model_warmup = 779; */ public Builder setEnableModelWarmup(boolean value) { enableModelWarmup_ = value; onChanged(); return this; } /** *
       * Enables model warmup.
       * 
* * bool enable_model_warmup = 779; */ public Builder clearEnableModelWarmup() { enableModelWarmup_ = false; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.serving.SessionBundleConfig) } // @@protoc_insertion_point(class_scope:tensorflow.serving.SessionBundleConfig) private static final tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig(); } public static tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public SessionBundleConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new SessionBundleConfig(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public tensorflow.serving.SessionBundleConfigOuterClass.SessionBundleConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface BatchingParametersOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.serving.BatchingParameters) com.google.protobuf.MessageOrBuilder { /** *
     * The maximum size of each batch.
     * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
     * achieve high throughput with batching.
     * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ boolean hasMaxBatchSize(); /** *
     * The maximum size of each batch.
     * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
     * achieve high throughput with batching.
     * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ com.google.protobuf.Int64Value getMaxBatchSize(); /** *
     * The maximum size of each batch.
     * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
     * achieve high throughput with batching.
     * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ com.google.protobuf.Int64ValueOrBuilder getMaxBatchSizeOrBuilder(); /** *
     * If a task has been enqueued for this amount of time (in microseconds), and
     * a thread is available, the scheduler will immediately form a batch from
     * enqueued tasks and assign the batch to the thread for processing, even if
     * the batch's size is below 'max_batch_size'.
     * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ boolean hasBatchTimeoutMicros(); /** *
     * If a task has been enqueued for this amount of time (in microseconds), and
     * a thread is available, the scheduler will immediately form a batch from
     * enqueued tasks and assign the batch to the thread for processing, even if
     * the batch's size is below 'max_batch_size'.
     * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ com.google.protobuf.Int64Value getBatchTimeoutMicros(); /** *
     * If a task has been enqueued for this amount of time (in microseconds), and
     * a thread is available, the scheduler will immediately form a batch from
     * enqueued tasks and assign the batch to the thread for processing, even if
     * the batch's size is below 'max_batch_size'.
     * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ com.google.protobuf.Int64ValueOrBuilder getBatchTimeoutMicrosOrBuilder(); /** *
     * The maximum length of the queue, in terms of the number of batches. (A
     * batch that has been scheduled on a thread is considered to have been
     * removed from the queue.)
     * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ boolean hasMaxEnqueuedBatches(); /** *
     * The maximum length of the queue, in terms of the number of batches. (A
     * batch that has been scheduled on a thread is considered to have been
     * removed from the queue.)
     * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ com.google.protobuf.Int64Value getMaxEnqueuedBatches(); /** *
     * The maximum length of the queue, in terms of the number of batches. (A
     * batch that has been scheduled on a thread is considered to have been
     * removed from the queue.)
     * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ com.google.protobuf.Int64ValueOrBuilder getMaxEnqueuedBatchesOrBuilder(); /** *
     * The number of threads to use to process batches.
     * Must be >= 1, and should be tuned carefully.
     * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ boolean hasNumBatchThreads(); /** *
     * The number of threads to use to process batches.
     * Must be >= 1, and should be tuned carefully.
     * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ com.google.protobuf.Int64Value getNumBatchThreads(); /** *
     * The number of threads to use to process batches.
     * Must be >= 1, and should be tuned carefully.
     * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ com.google.protobuf.Int64ValueOrBuilder getNumBatchThreadsOrBuilder(); /** *
     * The name to use for the pool of batch threads.
     * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ boolean hasThreadPoolName(); /** *
     * The name to use for the pool of batch threads.
     * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ com.google.protobuf.StringValue getThreadPoolName(); /** *
     * The name to use for the pool of batch threads.
     * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ com.google.protobuf.StringValueOrBuilder getThreadPoolNameOrBuilder(); /** *
     * The allowed batch sizes. (Ignored if left empty.)
     * Requirements:
     *  - The entries must be in increasing order.
     *  - The final entry must equal 'max_batch_size'.
     * 
* * repeated int64 allowed_batch_sizes = 6; */ java.util.List getAllowedBatchSizesList(); /** *
     * The allowed batch sizes. (Ignored if left empty.)
     * Requirements:
     *  - The entries must be in increasing order.
     *  - The final entry must equal 'max_batch_size'.
     * 
* * repeated int64 allowed_batch_sizes = 6; */ int getAllowedBatchSizesCount(); /** *
     * The allowed batch sizes. (Ignored if left empty.)
     * Requirements:
     *  - The entries must be in increasing order.
     *  - The final entry must equal 'max_batch_size'.
     * 
* * repeated int64 allowed_batch_sizes = 6; */ long getAllowedBatchSizes(int index); /** *
     * Whether to pad variable-length inputs when a batch is formed.
     * 
* * bool pad_variable_length_inputs = 7; */ boolean getPadVariableLengthInputs(); } /** *
   * Batching parameters. Each individual parameter is optional. If omitted, the
   * default value from the relevant batching config struct (SharedBatchScheduler
   * ::Options or BatchSchedulerRetrier::Options) is used.
   * 
* * Protobuf type {@code tensorflow.serving.BatchingParameters} */ public static final class BatchingParameters extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.serving.BatchingParameters) BatchingParametersOrBuilder { private static final long serialVersionUID = 0L; // Use BatchingParameters.newBuilder() to construct. private BatchingParameters(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private BatchingParameters() { allowedBatchSizes_ = java.util.Collections.emptyList(); padVariableLengthInputs_ = false; } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private BatchingParameters( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { com.google.protobuf.Int64Value.Builder subBuilder = null; if (maxBatchSize_ != null) { subBuilder = maxBatchSize_.toBuilder(); } maxBatchSize_ = input.readMessage(com.google.protobuf.Int64Value.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(maxBatchSize_); maxBatchSize_ = subBuilder.buildPartial(); } break; } case 18: { com.google.protobuf.Int64Value.Builder subBuilder = null; if (batchTimeoutMicros_ != null) { subBuilder = batchTimeoutMicros_.toBuilder(); } batchTimeoutMicros_ = input.readMessage(com.google.protobuf.Int64Value.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(batchTimeoutMicros_); batchTimeoutMicros_ = subBuilder.buildPartial(); } break; } case 26: { com.google.protobuf.Int64Value.Builder subBuilder = null; if (maxEnqueuedBatches_ != null) { subBuilder = maxEnqueuedBatches_.toBuilder(); } maxEnqueuedBatches_ = input.readMessage(com.google.protobuf.Int64Value.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(maxEnqueuedBatches_); maxEnqueuedBatches_ = subBuilder.buildPartial(); } break; } case 34: { com.google.protobuf.Int64Value.Builder subBuilder = null; if (numBatchThreads_ != null) { subBuilder = numBatchThreads_.toBuilder(); } numBatchThreads_ = input.readMessage(com.google.protobuf.Int64Value.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(numBatchThreads_); numBatchThreads_ = subBuilder.buildPartial(); } break; } case 42: { com.google.protobuf.StringValue.Builder subBuilder = null; if (threadPoolName_ != null) { subBuilder = threadPoolName_.toBuilder(); } threadPoolName_ = input.readMessage(com.google.protobuf.StringValue.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(threadPoolName_); threadPoolName_ = subBuilder.buildPartial(); } break; } case 48: { if (!((mutable_bitField0_ & 0x00000020) == 0x00000020)) { allowedBatchSizes_ = new java.util.ArrayList(); mutable_bitField0_ |= 0x00000020; } allowedBatchSizes_.add(input.readInt64()); break; } case 50: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); if (!((mutable_bitField0_ & 0x00000020) == 0x00000020) && input.getBytesUntilLimit() > 0) { allowedBatchSizes_ = new java.util.ArrayList(); mutable_bitField0_ |= 0x00000020; } while (input.getBytesUntilLimit() > 0) { allowedBatchSizes_.add(input.readInt64()); } input.popLimit(limit); break; } case 56: { padVariableLengthInputs_ = input.readBool(); break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { if (((mutable_bitField0_ & 0x00000020) == 0x00000020)) { allowedBatchSizes_ = java.util.Collections.unmodifiableList(allowedBatchSizes_); } this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.serving.SessionBundleConfigOuterClass.internal_static_tensorflow_serving_BatchingParameters_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.serving.SessionBundleConfigOuterClass.internal_static_tensorflow_serving_BatchingParameters_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.class, tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.Builder.class); } private int bitField0_; public static final int MAX_BATCH_SIZE_FIELD_NUMBER = 1; private com.google.protobuf.Int64Value maxBatchSize_; /** *
     * The maximum size of each batch.
     * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
     * achieve high throughput with batching.
     * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ public boolean hasMaxBatchSize() { return maxBatchSize_ != null; } /** *
     * The maximum size of each batch.
     * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
     * achieve high throughput with batching.
     * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ public com.google.protobuf.Int64Value getMaxBatchSize() { return maxBatchSize_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : maxBatchSize_; } /** *
     * The maximum size of each batch.
     * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
     * achieve high throughput with batching.
     * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ public com.google.protobuf.Int64ValueOrBuilder getMaxBatchSizeOrBuilder() { return getMaxBatchSize(); } public static final int BATCH_TIMEOUT_MICROS_FIELD_NUMBER = 2; private com.google.protobuf.Int64Value batchTimeoutMicros_; /** *
     * If a task has been enqueued for this amount of time (in microseconds), and
     * a thread is available, the scheduler will immediately form a batch from
     * enqueued tasks and assign the batch to the thread for processing, even if
     * the batch's size is below 'max_batch_size'.
     * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ public boolean hasBatchTimeoutMicros() { return batchTimeoutMicros_ != null; } /** *
     * If a task has been enqueued for this amount of time (in microseconds), and
     * a thread is available, the scheduler will immediately form a batch from
     * enqueued tasks and assign the batch to the thread for processing, even if
     * the batch's size is below 'max_batch_size'.
     * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ public com.google.protobuf.Int64Value getBatchTimeoutMicros() { return batchTimeoutMicros_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : batchTimeoutMicros_; } /** *
     * If a task has been enqueued for this amount of time (in microseconds), and
     * a thread is available, the scheduler will immediately form a batch from
     * enqueued tasks and assign the batch to the thread for processing, even if
     * the batch's size is below 'max_batch_size'.
     * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ public com.google.protobuf.Int64ValueOrBuilder getBatchTimeoutMicrosOrBuilder() { return getBatchTimeoutMicros(); } public static final int MAX_ENQUEUED_BATCHES_FIELD_NUMBER = 3; private com.google.protobuf.Int64Value maxEnqueuedBatches_; /** *
     * The maximum length of the queue, in terms of the number of batches. (A
     * batch that has been scheduled on a thread is considered to have been
     * removed from the queue.)
     * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ public boolean hasMaxEnqueuedBatches() { return maxEnqueuedBatches_ != null; } /** *
     * The maximum length of the queue, in terms of the number of batches. (A
     * batch that has been scheduled on a thread is considered to have been
     * removed from the queue.)
     * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ public com.google.protobuf.Int64Value getMaxEnqueuedBatches() { return maxEnqueuedBatches_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : maxEnqueuedBatches_; } /** *
     * The maximum length of the queue, in terms of the number of batches. (A
     * batch that has been scheduled on a thread is considered to have been
     * removed from the queue.)
     * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ public com.google.protobuf.Int64ValueOrBuilder getMaxEnqueuedBatchesOrBuilder() { return getMaxEnqueuedBatches(); } public static final int NUM_BATCH_THREADS_FIELD_NUMBER = 4; private com.google.protobuf.Int64Value numBatchThreads_; /** *
     * The number of threads to use to process batches.
     * Must be >= 1, and should be tuned carefully.
     * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ public boolean hasNumBatchThreads() { return numBatchThreads_ != null; } /** *
     * The number of threads to use to process batches.
     * Must be >= 1, and should be tuned carefully.
     * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ public com.google.protobuf.Int64Value getNumBatchThreads() { return numBatchThreads_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : numBatchThreads_; } /** *
     * The number of threads to use to process batches.
     * Must be >= 1, and should be tuned carefully.
     * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ public com.google.protobuf.Int64ValueOrBuilder getNumBatchThreadsOrBuilder() { return getNumBatchThreads(); } public static final int THREAD_POOL_NAME_FIELD_NUMBER = 5; private com.google.protobuf.StringValue threadPoolName_; /** *
     * The name to use for the pool of batch threads.
     * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ public boolean hasThreadPoolName() { return threadPoolName_ != null; } /** *
     * The name to use for the pool of batch threads.
     * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ public com.google.protobuf.StringValue getThreadPoolName() { return threadPoolName_ == null ? com.google.protobuf.StringValue.getDefaultInstance() : threadPoolName_; } /** *
     * The name to use for the pool of batch threads.
     * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ public com.google.protobuf.StringValueOrBuilder getThreadPoolNameOrBuilder() { return getThreadPoolName(); } public static final int ALLOWED_BATCH_SIZES_FIELD_NUMBER = 6; private java.util.List allowedBatchSizes_; /** *
     * The allowed batch sizes. (Ignored if left empty.)
     * Requirements:
     *  - The entries must be in increasing order.
     *  - The final entry must equal 'max_batch_size'.
     * 
* * repeated int64 allowed_batch_sizes = 6; */ public java.util.List getAllowedBatchSizesList() { return allowedBatchSizes_; } /** *
     * The allowed batch sizes. (Ignored if left empty.)
     * Requirements:
     *  - The entries must be in increasing order.
     *  - The final entry must equal 'max_batch_size'.
     * 
* * repeated int64 allowed_batch_sizes = 6; */ public int getAllowedBatchSizesCount() { return allowedBatchSizes_.size(); } /** *
     * The allowed batch sizes. (Ignored if left empty.)
     * Requirements:
     *  - The entries must be in increasing order.
     *  - The final entry must equal 'max_batch_size'.
     * 
* * repeated int64 allowed_batch_sizes = 6; */ public long getAllowedBatchSizes(int index) { return allowedBatchSizes_.get(index); } private int allowedBatchSizesMemoizedSerializedSize = -1; public static final int PAD_VARIABLE_LENGTH_INPUTS_FIELD_NUMBER = 7; private boolean padVariableLengthInputs_; /** *
     * Whether to pad variable-length inputs when a batch is formed.
     * 
* * bool pad_variable_length_inputs = 7; */ public boolean getPadVariableLengthInputs() { return padVariableLengthInputs_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { getSerializedSize(); if (maxBatchSize_ != null) { output.writeMessage(1, getMaxBatchSize()); } if (batchTimeoutMicros_ != null) { output.writeMessage(2, getBatchTimeoutMicros()); } if (maxEnqueuedBatches_ != null) { output.writeMessage(3, getMaxEnqueuedBatches()); } if (numBatchThreads_ != null) { output.writeMessage(4, getNumBatchThreads()); } if (threadPoolName_ != null) { output.writeMessage(5, getThreadPoolName()); } if (getAllowedBatchSizesList().size() > 0) { output.writeUInt32NoTag(50); output.writeUInt32NoTag(allowedBatchSizesMemoizedSerializedSize); } for (int i = 0; i < allowedBatchSizes_.size(); i++) { output.writeInt64NoTag(allowedBatchSizes_.get(i)); } if (padVariableLengthInputs_ != false) { output.writeBool(7, padVariableLengthInputs_); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (maxBatchSize_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, getMaxBatchSize()); } if (batchTimeoutMicros_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, getBatchTimeoutMicros()); } if (maxEnqueuedBatches_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(3, getMaxEnqueuedBatches()); } if (numBatchThreads_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(4, getNumBatchThreads()); } if (threadPoolName_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(5, getThreadPoolName()); } { int dataSize = 0; for (int i = 0; i < allowedBatchSizes_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeInt64SizeNoTag(allowedBatchSizes_.get(i)); } size += dataSize; if (!getAllowedBatchSizesList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } allowedBatchSizesMemoizedSerializedSize = dataSize; } if (padVariableLengthInputs_ != false) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(7, padVariableLengthInputs_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters)) { return super.equals(obj); } tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters other = (tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters) obj; boolean result = true; result = result && (hasMaxBatchSize() == other.hasMaxBatchSize()); if (hasMaxBatchSize()) { result = result && getMaxBatchSize() .equals(other.getMaxBatchSize()); } result = result && (hasBatchTimeoutMicros() == other.hasBatchTimeoutMicros()); if (hasBatchTimeoutMicros()) { result = result && getBatchTimeoutMicros() .equals(other.getBatchTimeoutMicros()); } result = result && (hasMaxEnqueuedBatches() == other.hasMaxEnqueuedBatches()); if (hasMaxEnqueuedBatches()) { result = result && getMaxEnqueuedBatches() .equals(other.getMaxEnqueuedBatches()); } result = result && (hasNumBatchThreads() == other.hasNumBatchThreads()); if (hasNumBatchThreads()) { result = result && getNumBatchThreads() .equals(other.getNumBatchThreads()); } result = result && (hasThreadPoolName() == other.hasThreadPoolName()); if (hasThreadPoolName()) { result = result && getThreadPoolName() .equals(other.getThreadPoolName()); } result = result && getAllowedBatchSizesList() .equals(other.getAllowedBatchSizesList()); result = result && (getPadVariableLengthInputs() == other.getPadVariableLengthInputs()); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasMaxBatchSize()) { hash = (37 * hash) + MAX_BATCH_SIZE_FIELD_NUMBER; hash = (53 * hash) + getMaxBatchSize().hashCode(); } if (hasBatchTimeoutMicros()) { hash = (37 * hash) + BATCH_TIMEOUT_MICROS_FIELD_NUMBER; hash = (53 * hash) + getBatchTimeoutMicros().hashCode(); } if (hasMaxEnqueuedBatches()) { hash = (37 * hash) + MAX_ENQUEUED_BATCHES_FIELD_NUMBER; hash = (53 * hash) + getMaxEnqueuedBatches().hashCode(); } if (hasNumBatchThreads()) { hash = (37 * hash) + NUM_BATCH_THREADS_FIELD_NUMBER; hash = (53 * hash) + getNumBatchThreads().hashCode(); } if (hasThreadPoolName()) { hash = (37 * hash) + THREAD_POOL_NAME_FIELD_NUMBER; hash = (53 * hash) + getThreadPoolName().hashCode(); } if (getAllowedBatchSizesCount() > 0) { hash = (37 * hash) + ALLOWED_BATCH_SIZES_FIELD_NUMBER; hash = (53 * hash) + getAllowedBatchSizesList().hashCode(); } hash = (37 * hash) + PAD_VARIABLE_LENGTH_INPUTS_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getPadVariableLengthInputs()); hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Batching parameters. Each individual parameter is optional. If omitted, the
     * default value from the relevant batching config struct (SharedBatchScheduler
     * ::Options or BatchSchedulerRetrier::Options) is used.
     * 
* * Protobuf type {@code tensorflow.serving.BatchingParameters} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.serving.BatchingParameters) tensorflow.serving.SessionBundleConfigOuterClass.BatchingParametersOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.serving.SessionBundleConfigOuterClass.internal_static_tensorflow_serving_BatchingParameters_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.serving.SessionBundleConfigOuterClass.internal_static_tensorflow_serving_BatchingParameters_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.class, tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.Builder.class); } // Construct using tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); if (maxBatchSizeBuilder_ == null) { maxBatchSize_ = null; } else { maxBatchSize_ = null; maxBatchSizeBuilder_ = null; } if (batchTimeoutMicrosBuilder_ == null) { batchTimeoutMicros_ = null; } else { batchTimeoutMicros_ = null; batchTimeoutMicrosBuilder_ = null; } if (maxEnqueuedBatchesBuilder_ == null) { maxEnqueuedBatches_ = null; } else { maxEnqueuedBatches_ = null; maxEnqueuedBatchesBuilder_ = null; } if (numBatchThreadsBuilder_ == null) { numBatchThreads_ = null; } else { numBatchThreads_ = null; numBatchThreadsBuilder_ = null; } if (threadPoolNameBuilder_ == null) { threadPoolName_ = null; } else { threadPoolName_ = null; threadPoolNameBuilder_ = null; } allowedBatchSizes_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000020); padVariableLengthInputs_ = false; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return tensorflow.serving.SessionBundleConfigOuterClass.internal_static_tensorflow_serving_BatchingParameters_descriptor; } @java.lang.Override public tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters getDefaultInstanceForType() { return tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.getDefaultInstance(); } @java.lang.Override public tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters build() { tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters buildPartial() { tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters result = new tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters(this); int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (maxBatchSizeBuilder_ == null) { result.maxBatchSize_ = maxBatchSize_; } else { result.maxBatchSize_ = maxBatchSizeBuilder_.build(); } if (batchTimeoutMicrosBuilder_ == null) { result.batchTimeoutMicros_ = batchTimeoutMicros_; } else { result.batchTimeoutMicros_ = batchTimeoutMicrosBuilder_.build(); } if (maxEnqueuedBatchesBuilder_ == null) { result.maxEnqueuedBatches_ = maxEnqueuedBatches_; } else { result.maxEnqueuedBatches_ = maxEnqueuedBatchesBuilder_.build(); } if (numBatchThreadsBuilder_ == null) { result.numBatchThreads_ = numBatchThreads_; } else { result.numBatchThreads_ = numBatchThreadsBuilder_.build(); } if (threadPoolNameBuilder_ == null) { result.threadPoolName_ = threadPoolName_; } else { result.threadPoolName_ = threadPoolNameBuilder_.build(); } if (((bitField0_ & 0x00000020) == 0x00000020)) { allowedBatchSizes_ = java.util.Collections.unmodifiableList(allowedBatchSizes_); bitField0_ = (bitField0_ & ~0x00000020); } result.allowedBatchSizes_ = allowedBatchSizes_; result.padVariableLengthInputs_ = padVariableLengthInputs_; result.bitField0_ = to_bitField0_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters) { return mergeFrom((tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters other) { if (other == tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters.getDefaultInstance()) return this; if (other.hasMaxBatchSize()) { mergeMaxBatchSize(other.getMaxBatchSize()); } if (other.hasBatchTimeoutMicros()) { mergeBatchTimeoutMicros(other.getBatchTimeoutMicros()); } if (other.hasMaxEnqueuedBatches()) { mergeMaxEnqueuedBatches(other.getMaxEnqueuedBatches()); } if (other.hasNumBatchThreads()) { mergeNumBatchThreads(other.getNumBatchThreads()); } if (other.hasThreadPoolName()) { mergeThreadPoolName(other.getThreadPoolName()); } if (!other.allowedBatchSizes_.isEmpty()) { if (allowedBatchSizes_.isEmpty()) { allowedBatchSizes_ = other.allowedBatchSizes_; bitField0_ = (bitField0_ & ~0x00000020); } else { ensureAllowedBatchSizesIsMutable(); allowedBatchSizes_.addAll(other.allowedBatchSizes_); } onChanged(); } if (other.getPadVariableLengthInputs() != false) { setPadVariableLengthInputs(other.getPadVariableLengthInputs()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int bitField0_; private com.google.protobuf.Int64Value maxBatchSize_ = null; private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder> maxBatchSizeBuilder_; /** *
       * The maximum size of each batch.
       * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
       * achieve high throughput with batching.
       * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ public boolean hasMaxBatchSize() { return maxBatchSizeBuilder_ != null || maxBatchSize_ != null; } /** *
       * The maximum size of each batch.
       * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
       * achieve high throughput with batching.
       * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ public com.google.protobuf.Int64Value getMaxBatchSize() { if (maxBatchSizeBuilder_ == null) { return maxBatchSize_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : maxBatchSize_; } else { return maxBatchSizeBuilder_.getMessage(); } } /** *
       * The maximum size of each batch.
       * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
       * achieve high throughput with batching.
       * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ public Builder setMaxBatchSize(com.google.protobuf.Int64Value value) { if (maxBatchSizeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } maxBatchSize_ = value; onChanged(); } else { maxBatchSizeBuilder_.setMessage(value); } return this; } /** *
       * The maximum size of each batch.
       * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
       * achieve high throughput with batching.
       * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ public Builder setMaxBatchSize( com.google.protobuf.Int64Value.Builder builderForValue) { if (maxBatchSizeBuilder_ == null) { maxBatchSize_ = builderForValue.build(); onChanged(); } else { maxBatchSizeBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * The maximum size of each batch.
       * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
       * achieve high throughput with batching.
       * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ public Builder mergeMaxBatchSize(com.google.protobuf.Int64Value value) { if (maxBatchSizeBuilder_ == null) { if (maxBatchSize_ != null) { maxBatchSize_ = com.google.protobuf.Int64Value.newBuilder(maxBatchSize_).mergeFrom(value).buildPartial(); } else { maxBatchSize_ = value; } onChanged(); } else { maxBatchSizeBuilder_.mergeFrom(value); } return this; } /** *
       * The maximum size of each batch.
       * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
       * achieve high throughput with batching.
       * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ public Builder clearMaxBatchSize() { if (maxBatchSizeBuilder_ == null) { maxBatchSize_ = null; onChanged(); } else { maxBatchSize_ = null; maxBatchSizeBuilder_ = null; } return this; } /** *
       * The maximum size of each batch.
       * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
       * achieve high throughput with batching.
       * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ public com.google.protobuf.Int64Value.Builder getMaxBatchSizeBuilder() { onChanged(); return getMaxBatchSizeFieldBuilder().getBuilder(); } /** *
       * The maximum size of each batch.
       * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
       * achieve high throughput with batching.
       * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ public com.google.protobuf.Int64ValueOrBuilder getMaxBatchSizeOrBuilder() { if (maxBatchSizeBuilder_ != null) { return maxBatchSizeBuilder_.getMessageOrBuilder(); } else { return maxBatchSize_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : maxBatchSize_; } } /** *
       * The maximum size of each batch.
       * IMPORTANT: As discussed above, use 'max_batch_size * 2' client threads to
       * achieve high throughput with batching.
       * 
* * .google.protobuf.Int64Value max_batch_size = 1; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder> getMaxBatchSizeFieldBuilder() { if (maxBatchSizeBuilder_ == null) { maxBatchSizeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder>( getMaxBatchSize(), getParentForChildren(), isClean()); maxBatchSize_ = null; } return maxBatchSizeBuilder_; } private com.google.protobuf.Int64Value batchTimeoutMicros_ = null; private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder> batchTimeoutMicrosBuilder_; /** *
       * If a task has been enqueued for this amount of time (in microseconds), and
       * a thread is available, the scheduler will immediately form a batch from
       * enqueued tasks and assign the batch to the thread for processing, even if
       * the batch's size is below 'max_batch_size'.
       * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ public boolean hasBatchTimeoutMicros() { return batchTimeoutMicrosBuilder_ != null || batchTimeoutMicros_ != null; } /** *
       * If a task has been enqueued for this amount of time (in microseconds), and
       * a thread is available, the scheduler will immediately form a batch from
       * enqueued tasks and assign the batch to the thread for processing, even if
       * the batch's size is below 'max_batch_size'.
       * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ public com.google.protobuf.Int64Value getBatchTimeoutMicros() { if (batchTimeoutMicrosBuilder_ == null) { return batchTimeoutMicros_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : batchTimeoutMicros_; } else { return batchTimeoutMicrosBuilder_.getMessage(); } } /** *
       * If a task has been enqueued for this amount of time (in microseconds), and
       * a thread is available, the scheduler will immediately form a batch from
       * enqueued tasks and assign the batch to the thread for processing, even if
       * the batch's size is below 'max_batch_size'.
       * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ public Builder setBatchTimeoutMicros(com.google.protobuf.Int64Value value) { if (batchTimeoutMicrosBuilder_ == null) { if (value == null) { throw new NullPointerException(); } batchTimeoutMicros_ = value; onChanged(); } else { batchTimeoutMicrosBuilder_.setMessage(value); } return this; } /** *
       * If a task has been enqueued for this amount of time (in microseconds), and
       * a thread is available, the scheduler will immediately form a batch from
       * enqueued tasks and assign the batch to the thread for processing, even if
       * the batch's size is below 'max_batch_size'.
       * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ public Builder setBatchTimeoutMicros( com.google.protobuf.Int64Value.Builder builderForValue) { if (batchTimeoutMicrosBuilder_ == null) { batchTimeoutMicros_ = builderForValue.build(); onChanged(); } else { batchTimeoutMicrosBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * If a task has been enqueued for this amount of time (in microseconds), and
       * a thread is available, the scheduler will immediately form a batch from
       * enqueued tasks and assign the batch to the thread for processing, even if
       * the batch's size is below 'max_batch_size'.
       * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ public Builder mergeBatchTimeoutMicros(com.google.protobuf.Int64Value value) { if (batchTimeoutMicrosBuilder_ == null) { if (batchTimeoutMicros_ != null) { batchTimeoutMicros_ = com.google.protobuf.Int64Value.newBuilder(batchTimeoutMicros_).mergeFrom(value).buildPartial(); } else { batchTimeoutMicros_ = value; } onChanged(); } else { batchTimeoutMicrosBuilder_.mergeFrom(value); } return this; } /** *
       * If a task has been enqueued for this amount of time (in microseconds), and
       * a thread is available, the scheduler will immediately form a batch from
       * enqueued tasks and assign the batch to the thread for processing, even if
       * the batch's size is below 'max_batch_size'.
       * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ public Builder clearBatchTimeoutMicros() { if (batchTimeoutMicrosBuilder_ == null) { batchTimeoutMicros_ = null; onChanged(); } else { batchTimeoutMicros_ = null; batchTimeoutMicrosBuilder_ = null; } return this; } /** *
       * If a task has been enqueued for this amount of time (in microseconds), and
       * a thread is available, the scheduler will immediately form a batch from
       * enqueued tasks and assign the batch to the thread for processing, even if
       * the batch's size is below 'max_batch_size'.
       * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ public com.google.protobuf.Int64Value.Builder getBatchTimeoutMicrosBuilder() { onChanged(); return getBatchTimeoutMicrosFieldBuilder().getBuilder(); } /** *
       * If a task has been enqueued for this amount of time (in microseconds), and
       * a thread is available, the scheduler will immediately form a batch from
       * enqueued tasks and assign the batch to the thread for processing, even if
       * the batch's size is below 'max_batch_size'.
       * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ public com.google.protobuf.Int64ValueOrBuilder getBatchTimeoutMicrosOrBuilder() { if (batchTimeoutMicrosBuilder_ != null) { return batchTimeoutMicrosBuilder_.getMessageOrBuilder(); } else { return batchTimeoutMicros_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : batchTimeoutMicros_; } } /** *
       * If a task has been enqueued for this amount of time (in microseconds), and
       * a thread is available, the scheduler will immediately form a batch from
       * enqueued tasks and assign the batch to the thread for processing, even if
       * the batch's size is below 'max_batch_size'.
       * 
* * .google.protobuf.Int64Value batch_timeout_micros = 2; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder> getBatchTimeoutMicrosFieldBuilder() { if (batchTimeoutMicrosBuilder_ == null) { batchTimeoutMicrosBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder>( getBatchTimeoutMicros(), getParentForChildren(), isClean()); batchTimeoutMicros_ = null; } return batchTimeoutMicrosBuilder_; } private com.google.protobuf.Int64Value maxEnqueuedBatches_ = null; private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder> maxEnqueuedBatchesBuilder_; /** *
       * The maximum length of the queue, in terms of the number of batches. (A
       * batch that has been scheduled on a thread is considered to have been
       * removed from the queue.)
       * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ public boolean hasMaxEnqueuedBatches() { return maxEnqueuedBatchesBuilder_ != null || maxEnqueuedBatches_ != null; } /** *
       * The maximum length of the queue, in terms of the number of batches. (A
       * batch that has been scheduled on a thread is considered to have been
       * removed from the queue.)
       * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ public com.google.protobuf.Int64Value getMaxEnqueuedBatches() { if (maxEnqueuedBatchesBuilder_ == null) { return maxEnqueuedBatches_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : maxEnqueuedBatches_; } else { return maxEnqueuedBatchesBuilder_.getMessage(); } } /** *
       * The maximum length of the queue, in terms of the number of batches. (A
       * batch that has been scheduled on a thread is considered to have been
       * removed from the queue.)
       * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ public Builder setMaxEnqueuedBatches(com.google.protobuf.Int64Value value) { if (maxEnqueuedBatchesBuilder_ == null) { if (value == null) { throw new NullPointerException(); } maxEnqueuedBatches_ = value; onChanged(); } else { maxEnqueuedBatchesBuilder_.setMessage(value); } return this; } /** *
       * The maximum length of the queue, in terms of the number of batches. (A
       * batch that has been scheduled on a thread is considered to have been
       * removed from the queue.)
       * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ public Builder setMaxEnqueuedBatches( com.google.protobuf.Int64Value.Builder builderForValue) { if (maxEnqueuedBatchesBuilder_ == null) { maxEnqueuedBatches_ = builderForValue.build(); onChanged(); } else { maxEnqueuedBatchesBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * The maximum length of the queue, in terms of the number of batches. (A
       * batch that has been scheduled on a thread is considered to have been
       * removed from the queue.)
       * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ public Builder mergeMaxEnqueuedBatches(com.google.protobuf.Int64Value value) { if (maxEnqueuedBatchesBuilder_ == null) { if (maxEnqueuedBatches_ != null) { maxEnqueuedBatches_ = com.google.protobuf.Int64Value.newBuilder(maxEnqueuedBatches_).mergeFrom(value).buildPartial(); } else { maxEnqueuedBatches_ = value; } onChanged(); } else { maxEnqueuedBatchesBuilder_.mergeFrom(value); } return this; } /** *
       * The maximum length of the queue, in terms of the number of batches. (A
       * batch that has been scheduled on a thread is considered to have been
       * removed from the queue.)
       * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ public Builder clearMaxEnqueuedBatches() { if (maxEnqueuedBatchesBuilder_ == null) { maxEnqueuedBatches_ = null; onChanged(); } else { maxEnqueuedBatches_ = null; maxEnqueuedBatchesBuilder_ = null; } return this; } /** *
       * The maximum length of the queue, in terms of the number of batches. (A
       * batch that has been scheduled on a thread is considered to have been
       * removed from the queue.)
       * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ public com.google.protobuf.Int64Value.Builder getMaxEnqueuedBatchesBuilder() { onChanged(); return getMaxEnqueuedBatchesFieldBuilder().getBuilder(); } /** *
       * The maximum length of the queue, in terms of the number of batches. (A
       * batch that has been scheduled on a thread is considered to have been
       * removed from the queue.)
       * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ public com.google.protobuf.Int64ValueOrBuilder getMaxEnqueuedBatchesOrBuilder() { if (maxEnqueuedBatchesBuilder_ != null) { return maxEnqueuedBatchesBuilder_.getMessageOrBuilder(); } else { return maxEnqueuedBatches_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : maxEnqueuedBatches_; } } /** *
       * The maximum length of the queue, in terms of the number of batches. (A
       * batch that has been scheduled on a thread is considered to have been
       * removed from the queue.)
       * 
* * .google.protobuf.Int64Value max_enqueued_batches = 3; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder> getMaxEnqueuedBatchesFieldBuilder() { if (maxEnqueuedBatchesBuilder_ == null) { maxEnqueuedBatchesBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder>( getMaxEnqueuedBatches(), getParentForChildren(), isClean()); maxEnqueuedBatches_ = null; } return maxEnqueuedBatchesBuilder_; } private com.google.protobuf.Int64Value numBatchThreads_ = null; private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder> numBatchThreadsBuilder_; /** *
       * The number of threads to use to process batches.
       * Must be >= 1, and should be tuned carefully.
       * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ public boolean hasNumBatchThreads() { return numBatchThreadsBuilder_ != null || numBatchThreads_ != null; } /** *
       * The number of threads to use to process batches.
       * Must be >= 1, and should be tuned carefully.
       * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ public com.google.protobuf.Int64Value getNumBatchThreads() { if (numBatchThreadsBuilder_ == null) { return numBatchThreads_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : numBatchThreads_; } else { return numBatchThreadsBuilder_.getMessage(); } } /** *
       * The number of threads to use to process batches.
       * Must be >= 1, and should be tuned carefully.
       * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ public Builder setNumBatchThreads(com.google.protobuf.Int64Value value) { if (numBatchThreadsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } numBatchThreads_ = value; onChanged(); } else { numBatchThreadsBuilder_.setMessage(value); } return this; } /** *
       * The number of threads to use to process batches.
       * Must be >= 1, and should be tuned carefully.
       * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ public Builder setNumBatchThreads( com.google.protobuf.Int64Value.Builder builderForValue) { if (numBatchThreadsBuilder_ == null) { numBatchThreads_ = builderForValue.build(); onChanged(); } else { numBatchThreadsBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * The number of threads to use to process batches.
       * Must be >= 1, and should be tuned carefully.
       * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ public Builder mergeNumBatchThreads(com.google.protobuf.Int64Value value) { if (numBatchThreadsBuilder_ == null) { if (numBatchThreads_ != null) { numBatchThreads_ = com.google.protobuf.Int64Value.newBuilder(numBatchThreads_).mergeFrom(value).buildPartial(); } else { numBatchThreads_ = value; } onChanged(); } else { numBatchThreadsBuilder_.mergeFrom(value); } return this; } /** *
       * The number of threads to use to process batches.
       * Must be >= 1, and should be tuned carefully.
       * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ public Builder clearNumBatchThreads() { if (numBatchThreadsBuilder_ == null) { numBatchThreads_ = null; onChanged(); } else { numBatchThreads_ = null; numBatchThreadsBuilder_ = null; } return this; } /** *
       * The number of threads to use to process batches.
       * Must be >= 1, and should be tuned carefully.
       * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ public com.google.protobuf.Int64Value.Builder getNumBatchThreadsBuilder() { onChanged(); return getNumBatchThreadsFieldBuilder().getBuilder(); } /** *
       * The number of threads to use to process batches.
       * Must be >= 1, and should be tuned carefully.
       * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ public com.google.protobuf.Int64ValueOrBuilder getNumBatchThreadsOrBuilder() { if (numBatchThreadsBuilder_ != null) { return numBatchThreadsBuilder_.getMessageOrBuilder(); } else { return numBatchThreads_ == null ? com.google.protobuf.Int64Value.getDefaultInstance() : numBatchThreads_; } } /** *
       * The number of threads to use to process batches.
       * Must be >= 1, and should be tuned carefully.
       * 
* * .google.protobuf.Int64Value num_batch_threads = 4; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder> getNumBatchThreadsFieldBuilder() { if (numBatchThreadsBuilder_ == null) { numBatchThreadsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Int64Value, com.google.protobuf.Int64Value.Builder, com.google.protobuf.Int64ValueOrBuilder>( getNumBatchThreads(), getParentForChildren(), isClean()); numBatchThreads_ = null; } return numBatchThreadsBuilder_; } private com.google.protobuf.StringValue threadPoolName_ = null; private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.StringValue, com.google.protobuf.StringValue.Builder, com.google.protobuf.StringValueOrBuilder> threadPoolNameBuilder_; /** *
       * The name to use for the pool of batch threads.
       * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ public boolean hasThreadPoolName() { return threadPoolNameBuilder_ != null || threadPoolName_ != null; } /** *
       * The name to use for the pool of batch threads.
       * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ public com.google.protobuf.StringValue getThreadPoolName() { if (threadPoolNameBuilder_ == null) { return threadPoolName_ == null ? com.google.protobuf.StringValue.getDefaultInstance() : threadPoolName_; } else { return threadPoolNameBuilder_.getMessage(); } } /** *
       * The name to use for the pool of batch threads.
       * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ public Builder setThreadPoolName(com.google.protobuf.StringValue value) { if (threadPoolNameBuilder_ == null) { if (value == null) { throw new NullPointerException(); } threadPoolName_ = value; onChanged(); } else { threadPoolNameBuilder_.setMessage(value); } return this; } /** *
       * The name to use for the pool of batch threads.
       * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ public Builder setThreadPoolName( com.google.protobuf.StringValue.Builder builderForValue) { if (threadPoolNameBuilder_ == null) { threadPoolName_ = builderForValue.build(); onChanged(); } else { threadPoolNameBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * The name to use for the pool of batch threads.
       * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ public Builder mergeThreadPoolName(com.google.protobuf.StringValue value) { if (threadPoolNameBuilder_ == null) { if (threadPoolName_ != null) { threadPoolName_ = com.google.protobuf.StringValue.newBuilder(threadPoolName_).mergeFrom(value).buildPartial(); } else { threadPoolName_ = value; } onChanged(); } else { threadPoolNameBuilder_.mergeFrom(value); } return this; } /** *
       * The name to use for the pool of batch threads.
       * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ public Builder clearThreadPoolName() { if (threadPoolNameBuilder_ == null) { threadPoolName_ = null; onChanged(); } else { threadPoolName_ = null; threadPoolNameBuilder_ = null; } return this; } /** *
       * The name to use for the pool of batch threads.
       * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ public com.google.protobuf.StringValue.Builder getThreadPoolNameBuilder() { onChanged(); return getThreadPoolNameFieldBuilder().getBuilder(); } /** *
       * The name to use for the pool of batch threads.
       * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ public com.google.protobuf.StringValueOrBuilder getThreadPoolNameOrBuilder() { if (threadPoolNameBuilder_ != null) { return threadPoolNameBuilder_.getMessageOrBuilder(); } else { return threadPoolName_ == null ? com.google.protobuf.StringValue.getDefaultInstance() : threadPoolName_; } } /** *
       * The name to use for the pool of batch threads.
       * 
* * .google.protobuf.StringValue thread_pool_name = 5; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.StringValue, com.google.protobuf.StringValue.Builder, com.google.protobuf.StringValueOrBuilder> getThreadPoolNameFieldBuilder() { if (threadPoolNameBuilder_ == null) { threadPoolNameBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.StringValue, com.google.protobuf.StringValue.Builder, com.google.protobuf.StringValueOrBuilder>( getThreadPoolName(), getParentForChildren(), isClean()); threadPoolName_ = null; } return threadPoolNameBuilder_; } private java.util.List allowedBatchSizes_ = java.util.Collections.emptyList(); private void ensureAllowedBatchSizesIsMutable() { if (!((bitField0_ & 0x00000020) == 0x00000020)) { allowedBatchSizes_ = new java.util.ArrayList(allowedBatchSizes_); bitField0_ |= 0x00000020; } } /** *
       * The allowed batch sizes. (Ignored if left empty.)
       * Requirements:
       *  - The entries must be in increasing order.
       *  - The final entry must equal 'max_batch_size'.
       * 
* * repeated int64 allowed_batch_sizes = 6; */ public java.util.List getAllowedBatchSizesList() { return java.util.Collections.unmodifiableList(allowedBatchSizes_); } /** *
       * The allowed batch sizes. (Ignored if left empty.)
       * Requirements:
       *  - The entries must be in increasing order.
       *  - The final entry must equal 'max_batch_size'.
       * 
* * repeated int64 allowed_batch_sizes = 6; */ public int getAllowedBatchSizesCount() { return allowedBatchSizes_.size(); } /** *
       * The allowed batch sizes. (Ignored if left empty.)
       * Requirements:
       *  - The entries must be in increasing order.
       *  - The final entry must equal 'max_batch_size'.
       * 
* * repeated int64 allowed_batch_sizes = 6; */ public long getAllowedBatchSizes(int index) { return allowedBatchSizes_.get(index); } /** *
       * The allowed batch sizes. (Ignored if left empty.)
       * Requirements:
       *  - The entries must be in increasing order.
       *  - The final entry must equal 'max_batch_size'.
       * 
* * repeated int64 allowed_batch_sizes = 6; */ public Builder setAllowedBatchSizes( int index, long value) { ensureAllowedBatchSizesIsMutable(); allowedBatchSizes_.set(index, value); onChanged(); return this; } /** *
       * The allowed batch sizes. (Ignored if left empty.)
       * Requirements:
       *  - The entries must be in increasing order.
       *  - The final entry must equal 'max_batch_size'.
       * 
* * repeated int64 allowed_batch_sizes = 6; */ public Builder addAllowedBatchSizes(long value) { ensureAllowedBatchSizesIsMutable(); allowedBatchSizes_.add(value); onChanged(); return this; } /** *
       * The allowed batch sizes. (Ignored if left empty.)
       * Requirements:
       *  - The entries must be in increasing order.
       *  - The final entry must equal 'max_batch_size'.
       * 
* * repeated int64 allowed_batch_sizes = 6; */ public Builder addAllAllowedBatchSizes( java.lang.Iterable values) { ensureAllowedBatchSizesIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, allowedBatchSizes_); onChanged(); return this; } /** *
       * The allowed batch sizes. (Ignored if left empty.)
       * Requirements:
       *  - The entries must be in increasing order.
       *  - The final entry must equal 'max_batch_size'.
       * 
* * repeated int64 allowed_batch_sizes = 6; */ public Builder clearAllowedBatchSizes() { allowedBatchSizes_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000020); onChanged(); return this; } private boolean padVariableLengthInputs_ ; /** *
       * Whether to pad variable-length inputs when a batch is formed.
       * 
* * bool pad_variable_length_inputs = 7; */ public boolean getPadVariableLengthInputs() { return padVariableLengthInputs_; } /** *
       * Whether to pad variable-length inputs when a batch is formed.
       * 
* * bool pad_variable_length_inputs = 7; */ public Builder setPadVariableLengthInputs(boolean value) { padVariableLengthInputs_ = value; onChanged(); return this; } /** *
       * Whether to pad variable-length inputs when a batch is formed.
       * 
* * bool pad_variable_length_inputs = 7; */ public Builder clearPadVariableLengthInputs() { padVariableLengthInputs_ = false; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.serving.BatchingParameters) } // @@protoc_insertion_point(class_scope:tensorflow.serving.BatchingParameters) private static final tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters(); } public static tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public BatchingParameters parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new BatchingParameters(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public tensorflow.serving.SessionBundleConfigOuterClass.BatchingParameters getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_serving_SessionBundleConfig_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_serving_SessionBundleConfig_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_serving_BatchingParameters_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_serving_BatchingParameters_fieldAccessorTable; public static com.google.protobuf.Descriptors.FileDescriptor getDescriptor() { return descriptor; } private static com.google.protobuf.Descriptors.FileDescriptor descriptor; static { java.lang.String[] descriptorData = { "\nCtensorflow_serving/servables/tensorflo" + "w/session_bundle_config.proto\022\022tensorflo" + "w.serving\032\036google/protobuf/wrappers.prot" + "o\032%tensorflow/core/protobuf/config.proto" + "\032+tensorflow/core/protobuf/named_tensor." + "proto\"\242\003\n\023SessionBundleConfig\022\026\n\016session" + "_target\030\001 \001(\t\022/\n\016session_config\030\002 \001(\0132\027." + "tensorflow.ConfigProto\022C\n\023batching_param" + "eters\030\003 \001(\0132&.tensorflow.serving.Batchin" + "gParameters\022F\n!session_run_load_threadpo" + "ol_index\030\004 \001(\0132\033.google.protobuf.Int32Va" + "lue\0224\n,experimental_transient_ram_bytes_" + "during_load\030\005 \001(\004\022\030\n\020saved_model_tags\030\006 " + "\003(\t\022G\n experimental_fixed_input_tensors\030" + "\212\006 \003(\0132\034.tensorflow.NamedTensorProto\022\034\n\023" + "enable_model_warmup\030\213\006 \001(\010\"\360\002\n\022BatchingP" + "arameters\0223\n\016max_batch_size\030\001 \001(\0132\033.goog" + "le.protobuf.Int64Value\0229\n\024batch_timeout_" + "micros\030\002 \001(\0132\033.google.protobuf.Int64Valu" + "e\0229\n\024max_enqueued_batches\030\003 \001(\0132\033.google" + ".protobuf.Int64Value\0226\n\021num_batch_thread" + "s\030\004 \001(\0132\033.google.protobuf.Int64Value\0226\n\020" + "thread_pool_name\030\005 \001(\0132\034.google.protobuf" + ".StringValue\022\033\n\023allowed_batch_sizes\030\006 \003(" + "\003\022\"\n\032pad_variable_length_inputs\030\007 \001(\010b\006p" + "roto3" }; com.google.protobuf.Descriptors.FileDescriptor.InternalDescriptorAssigner assigner = new com.google.protobuf.Descriptors.FileDescriptor. InternalDescriptorAssigner() { public com.google.protobuf.ExtensionRegistry assignDescriptors( com.google.protobuf.Descriptors.FileDescriptor root) { descriptor = root; return null; } }; com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, new com.google.protobuf.Descriptors.FileDescriptor[] { com.google.protobuf.WrappersProto.getDescriptor(), org.tensorflow.framework.ConfigProtos.getDescriptor(), org.tensorflow.framework.NamedTensorProtos.getDescriptor(), }, assigner); internal_static_tensorflow_serving_SessionBundleConfig_descriptor = getDescriptor().getMessageTypes().get(0); internal_static_tensorflow_serving_SessionBundleConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_serving_SessionBundleConfig_descriptor, new java.lang.String[] { "SessionTarget", "SessionConfig", "BatchingParameters", "SessionRunLoadThreadpoolIndex", "ExperimentalTransientRamBytesDuringLoad", "SavedModelTags", "ExperimentalFixedInputTensors", "EnableModelWarmup", }); internal_static_tensorflow_serving_BatchingParameters_descriptor = getDescriptor().getMessageTypes().get(1); internal_static_tensorflow_serving_BatchingParameters_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_serving_BatchingParameters_descriptor, new java.lang.String[] { "MaxBatchSize", "BatchTimeoutMicros", "MaxEnqueuedBatches", "NumBatchThreads", "ThreadPoolName", "AllowedBatchSizes", "PadVariableLengthInputs", }); com.google.protobuf.WrappersProto.getDescriptor(); org.tensorflow.framework.ConfigProtos.getDescriptor(); org.tensorflow.framework.NamedTensorProtos.getDescriptor(); } // @@protoc_insertion_point(outer_class_scope) }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy