xla.gpu.BackendConfigs Maven / Gradle / Ivy
The newest version!
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: tensorflow/compiler/xla/service/gpu/backend_configs.proto
package xla.gpu;
public final class BackendConfigs {
private BackendConfigs() {}
public static void registerAllExtensions(
com.google.protobuf.ExtensionRegistryLite registry) {
}
public static void registerAllExtensions(
com.google.protobuf.ExtensionRegistry registry) {
registerAllExtensions(
(com.google.protobuf.ExtensionRegistryLite) registry);
}
public interface CudnnConvBackendConfigOrBuilder extends
// @@protoc_insertion_point(interface_extends:xla.gpu.CudnnConvBackendConfig)
com.google.protobuf.MessageOrBuilder {
/**
*
* Opaque algorithm number of cudnn algorithm chosen for this conv.
*
*
* int64 algorithm = 1;
*/
long getAlgorithm();
/**
*
* Whether we may use tensor cores when running this conv. Even if this is
* true, cudnn may choose not to use tensor cores, e.g. because the GPU or
* selected algorithm doesn't support it.
*
*
* bool tensor_ops_enabled = 2;
*/
boolean getTensorOpsEnabled();
/**
*
* The scaling factor multiplied with the convolution result.
*
*
* double conv_result_scale = 4;
*/
double getConvResultScale();
/**
*
* The requested activation (e.g. relu) after the convolution. It is with type
* stream_executor::dnn::ActivationMode.
*
*
* int64 activation_mode = 3;
*/
long getActivationMode();
/**
*
* The scaling factor multiplied with the side input. If no side input buffer
* is provided, this field must be 0.
*
*
* double side_input_scale = 5;
*/
double getSideInputScale();
}
/**
*
* Backend config for a convolution that runs through cudnn.
*
*
* Protobuf type {@code xla.gpu.CudnnConvBackendConfig}
*/
public static final class CudnnConvBackendConfig extends
com.google.protobuf.GeneratedMessageV3 implements
// @@protoc_insertion_point(message_implements:xla.gpu.CudnnConvBackendConfig)
CudnnConvBackendConfigOrBuilder {
private static final long serialVersionUID = 0L;
// Use CudnnConvBackendConfig.newBuilder() to construct.
private CudnnConvBackendConfig(com.google.protobuf.GeneratedMessageV3.Builder> builder) {
super(builder);
}
private CudnnConvBackendConfig() {
algorithm_ = 0L;
tensorOpsEnabled_ = false;
convResultScale_ = 0D;
activationMode_ = 0L;
sideInputScale_ = 0D;
}
@java.lang.Override
public final com.google.protobuf.UnknownFieldSet
getUnknownFields() {
return this.unknownFields;
}
private CudnnConvBackendConfig(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
this();
if (extensionRegistry == null) {
throw new java.lang.NullPointerException();
}
int mutable_bitField0_ = 0;
com.google.protobuf.UnknownFieldSet.Builder unknownFields =
com.google.protobuf.UnknownFieldSet.newBuilder();
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
case 8: {
algorithm_ = input.readInt64();
break;
}
case 16: {
tensorOpsEnabled_ = input.readBool();
break;
}
case 24: {
activationMode_ = input.readInt64();
break;
}
case 33: {
convResultScale_ = input.readDouble();
break;
}
case 41: {
sideInputScale_ = input.readDouble();
break;
}
default: {
if (!parseUnknownFieldProto3(
input, unknownFields, extensionRegistry, tag)) {
done = true;
}
break;
}
}
}
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(this);
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(
e).setUnfinishedMessage(this);
} finally {
this.unknownFields = unknownFields.build();
makeExtensionsImmutable();
}
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return xla.gpu.BackendConfigs.internal_static_xla_gpu_CudnnConvBackendConfig_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return xla.gpu.BackendConfigs.internal_static_xla_gpu_CudnnConvBackendConfig_fieldAccessorTable
.ensureFieldAccessorsInitialized(
xla.gpu.BackendConfigs.CudnnConvBackendConfig.class, xla.gpu.BackendConfigs.CudnnConvBackendConfig.Builder.class);
}
public static final int ALGORITHM_FIELD_NUMBER = 1;
private long algorithm_;
/**
*
* Opaque algorithm number of cudnn algorithm chosen for this conv.
*
*
* int64 algorithm = 1;
*/
public long getAlgorithm() {
return algorithm_;
}
public static final int TENSOR_OPS_ENABLED_FIELD_NUMBER = 2;
private boolean tensorOpsEnabled_;
/**
*
* Whether we may use tensor cores when running this conv. Even if this is
* true, cudnn may choose not to use tensor cores, e.g. because the GPU or
* selected algorithm doesn't support it.
*
*
* bool tensor_ops_enabled = 2;
*/
public boolean getTensorOpsEnabled() {
return tensorOpsEnabled_;
}
public static final int CONV_RESULT_SCALE_FIELD_NUMBER = 4;
private double convResultScale_;
/**
*
* The scaling factor multiplied with the convolution result.
*
*
* double conv_result_scale = 4;
*/
public double getConvResultScale() {
return convResultScale_;
}
public static final int ACTIVATION_MODE_FIELD_NUMBER = 3;
private long activationMode_;
/**
*
* The requested activation (e.g. relu) after the convolution. It is with type
* stream_executor::dnn::ActivationMode.
*
*
* int64 activation_mode = 3;
*/
public long getActivationMode() {
return activationMode_;
}
public static final int SIDE_INPUT_SCALE_FIELD_NUMBER = 5;
private double sideInputScale_;
/**
*
* The scaling factor multiplied with the side input. If no side input buffer
* is provided, this field must be 0.
*
*
* double side_input_scale = 5;
*/
public double getSideInputScale() {
return sideInputScale_;
}
private byte memoizedIsInitialized = -1;
@java.lang.Override
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized == 1) return true;
if (isInitialized == 0) return false;
memoizedIsInitialized = 1;
return true;
}
@java.lang.Override
public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.IOException {
if (algorithm_ != 0L) {
output.writeInt64(1, algorithm_);
}
if (tensorOpsEnabled_ != false) {
output.writeBool(2, tensorOpsEnabled_);
}
if (activationMode_ != 0L) {
output.writeInt64(3, activationMode_);
}
if (convResultScale_ != 0D) {
output.writeDouble(4, convResultScale_);
}
if (sideInputScale_ != 0D) {
output.writeDouble(5, sideInputScale_);
}
unknownFields.writeTo(output);
}
@java.lang.Override
public int getSerializedSize() {
int size = memoizedSize;
if (size != -1) return size;
size = 0;
if (algorithm_ != 0L) {
size += com.google.protobuf.CodedOutputStream
.computeInt64Size(1, algorithm_);
}
if (tensorOpsEnabled_ != false) {
size += com.google.protobuf.CodedOutputStream
.computeBoolSize(2, tensorOpsEnabled_);
}
if (activationMode_ != 0L) {
size += com.google.protobuf.CodedOutputStream
.computeInt64Size(3, activationMode_);
}
if (convResultScale_ != 0D) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(4, convResultScale_);
}
if (sideInputScale_ != 0D) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(5, sideInputScale_);
}
size += unknownFields.getSerializedSize();
memoizedSize = size;
return size;
}
@java.lang.Override
public boolean equals(final java.lang.Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof xla.gpu.BackendConfigs.CudnnConvBackendConfig)) {
return super.equals(obj);
}
xla.gpu.BackendConfigs.CudnnConvBackendConfig other = (xla.gpu.BackendConfigs.CudnnConvBackendConfig) obj;
boolean result = true;
result = result && (getAlgorithm()
== other.getAlgorithm());
result = result && (getTensorOpsEnabled()
== other.getTensorOpsEnabled());
result = result && (
java.lang.Double.doubleToLongBits(getConvResultScale())
== java.lang.Double.doubleToLongBits(
other.getConvResultScale()));
result = result && (getActivationMode()
== other.getActivationMode());
result = result && (
java.lang.Double.doubleToLongBits(getSideInputScale())
== java.lang.Double.doubleToLongBits(
other.getSideInputScale()));
result = result && unknownFields.equals(other.unknownFields);
return result;
}
@java.lang.Override
public int hashCode() {
if (memoizedHashCode != 0) {
return memoizedHashCode;
}
int hash = 41;
hash = (19 * hash) + getDescriptor().hashCode();
hash = (37 * hash) + ALGORITHM_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
getAlgorithm());
hash = (37 * hash) + TENSOR_OPS_ENABLED_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean(
getTensorOpsEnabled());
hash = (37 * hash) + CONV_RESULT_SCALE_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getConvResultScale()));
hash = (37 * hash) + ACTIVATION_MODE_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
getActivationMode());
hash = (37 * hash) + SIDE_INPUT_SCALE_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getSideInputScale()));
hash = (29 * hash) + unknownFields.hashCode();
memoizedHashCode = hash;
return hash;
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(
java.nio.ByteBuffer data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(
java.nio.ByteBuffer data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(
byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input);
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseDelimitedFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input, extensionRegistry);
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(
com.google.protobuf.CodedInputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
@java.lang.Override
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder() {
return DEFAULT_INSTANCE.toBuilder();
}
public static Builder newBuilder(xla.gpu.BackendConfigs.CudnnConvBackendConfig prototype) {
return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
}
@java.lang.Override
public Builder toBuilder() {
return this == DEFAULT_INSTANCE
? new Builder() : new Builder().mergeFrom(this);
}
@java.lang.Override
protected Builder newBuilderForType(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
*
* Backend config for a convolution that runs through cudnn.
*
*
* Protobuf type {@code xla.gpu.CudnnConvBackendConfig}
*/
public static final class Builder extends
com.google.protobuf.GeneratedMessageV3.Builder implements
// @@protoc_insertion_point(builder_implements:xla.gpu.CudnnConvBackendConfig)
xla.gpu.BackendConfigs.CudnnConvBackendConfigOrBuilder {
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return xla.gpu.BackendConfigs.internal_static_xla_gpu_CudnnConvBackendConfig_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return xla.gpu.BackendConfigs.internal_static_xla_gpu_CudnnConvBackendConfig_fieldAccessorTable
.ensureFieldAccessorsInitialized(
xla.gpu.BackendConfigs.CudnnConvBackendConfig.class, xla.gpu.BackendConfigs.CudnnConvBackendConfig.Builder.class);
}
// Construct using xla.gpu.BackendConfigs.CudnnConvBackendConfig.newBuilder()
private Builder() {
maybeForceBuilderInitialization();
}
private Builder(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
super(parent);
maybeForceBuilderInitialization();
}
private void maybeForceBuilderInitialization() {
if (com.google.protobuf.GeneratedMessageV3
.alwaysUseFieldBuilders) {
}
}
@java.lang.Override
public Builder clear() {
super.clear();
algorithm_ = 0L;
tensorOpsEnabled_ = false;
convResultScale_ = 0D;
activationMode_ = 0L;
sideInputScale_ = 0D;
return this;
}
@java.lang.Override
public com.google.protobuf.Descriptors.Descriptor
getDescriptorForType() {
return xla.gpu.BackendConfigs.internal_static_xla_gpu_CudnnConvBackendConfig_descriptor;
}
@java.lang.Override
public xla.gpu.BackendConfigs.CudnnConvBackendConfig getDefaultInstanceForType() {
return xla.gpu.BackendConfigs.CudnnConvBackendConfig.getDefaultInstance();
}
@java.lang.Override
public xla.gpu.BackendConfigs.CudnnConvBackendConfig build() {
xla.gpu.BackendConfigs.CudnnConvBackendConfig result = buildPartial();
if (!result.isInitialized()) {
throw newUninitializedMessageException(result);
}
return result;
}
@java.lang.Override
public xla.gpu.BackendConfigs.CudnnConvBackendConfig buildPartial() {
xla.gpu.BackendConfigs.CudnnConvBackendConfig result = new xla.gpu.BackendConfigs.CudnnConvBackendConfig(this);
result.algorithm_ = algorithm_;
result.tensorOpsEnabled_ = tensorOpsEnabled_;
result.convResultScale_ = convResultScale_;
result.activationMode_ = activationMode_;
result.sideInputScale_ = sideInputScale_;
onBuilt();
return result;
}
@java.lang.Override
public Builder clone() {
return (Builder) super.clone();
}
@java.lang.Override
public Builder setField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return (Builder) super.setField(field, value);
}
@java.lang.Override
public Builder clearField(
com.google.protobuf.Descriptors.FieldDescriptor field) {
return (Builder) super.clearField(field);
}
@java.lang.Override
public Builder clearOneof(
com.google.protobuf.Descriptors.OneofDescriptor oneof) {
return (Builder) super.clearOneof(oneof);
}
@java.lang.Override
public Builder setRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
int index, java.lang.Object value) {
return (Builder) super.setRepeatedField(field, index, value);
}
@java.lang.Override
public Builder addRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return (Builder) super.addRepeatedField(field, value);
}
@java.lang.Override
public Builder mergeFrom(com.google.protobuf.Message other) {
if (other instanceof xla.gpu.BackendConfigs.CudnnConvBackendConfig) {
return mergeFrom((xla.gpu.BackendConfigs.CudnnConvBackendConfig)other);
} else {
super.mergeFrom(other);
return this;
}
}
public Builder mergeFrom(xla.gpu.BackendConfigs.CudnnConvBackendConfig other) {
if (other == xla.gpu.BackendConfigs.CudnnConvBackendConfig.getDefaultInstance()) return this;
if (other.getAlgorithm() != 0L) {
setAlgorithm(other.getAlgorithm());
}
if (other.getTensorOpsEnabled() != false) {
setTensorOpsEnabled(other.getTensorOpsEnabled());
}
if (other.getConvResultScale() != 0D) {
setConvResultScale(other.getConvResultScale());
}
if (other.getActivationMode() != 0L) {
setActivationMode(other.getActivationMode());
}
if (other.getSideInputScale() != 0D) {
setSideInputScale(other.getSideInputScale());
}
this.mergeUnknownFields(other.unknownFields);
onChanged();
return this;
}
@java.lang.Override
public final boolean isInitialized() {
return true;
}
@java.lang.Override
public Builder mergeFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
xla.gpu.BackendConfigs.CudnnConvBackendConfig parsedMessage = null;
try {
parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry);
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
parsedMessage = (xla.gpu.BackendConfigs.CudnnConvBackendConfig) e.getUnfinishedMessage();
throw e.unwrapIOException();
} finally {
if (parsedMessage != null) {
mergeFrom(parsedMessage);
}
}
return this;
}
private long algorithm_ ;
/**
*
* Opaque algorithm number of cudnn algorithm chosen for this conv.
*
*
* int64 algorithm = 1;
*/
public long getAlgorithm() {
return algorithm_;
}
/**
*
* Opaque algorithm number of cudnn algorithm chosen for this conv.
*
*
* int64 algorithm = 1;
*/
public Builder setAlgorithm(long value) {
algorithm_ = value;
onChanged();
return this;
}
/**
*
* Opaque algorithm number of cudnn algorithm chosen for this conv.
*
*
* int64 algorithm = 1;
*/
public Builder clearAlgorithm() {
algorithm_ = 0L;
onChanged();
return this;
}
private boolean tensorOpsEnabled_ ;
/**
*
* Whether we may use tensor cores when running this conv. Even if this is
* true, cudnn may choose not to use tensor cores, e.g. because the GPU or
* selected algorithm doesn't support it.
*
*
* bool tensor_ops_enabled = 2;
*/
public boolean getTensorOpsEnabled() {
return tensorOpsEnabled_;
}
/**
*
* Whether we may use tensor cores when running this conv. Even if this is
* true, cudnn may choose not to use tensor cores, e.g. because the GPU or
* selected algorithm doesn't support it.
*
*
* bool tensor_ops_enabled = 2;
*/
public Builder setTensorOpsEnabled(boolean value) {
tensorOpsEnabled_ = value;
onChanged();
return this;
}
/**
*
* Whether we may use tensor cores when running this conv. Even if this is
* true, cudnn may choose not to use tensor cores, e.g. because the GPU or
* selected algorithm doesn't support it.
*
*
* bool tensor_ops_enabled = 2;
*/
public Builder clearTensorOpsEnabled() {
tensorOpsEnabled_ = false;
onChanged();
return this;
}
private double convResultScale_ ;
/**
*
* The scaling factor multiplied with the convolution result.
*
*
* double conv_result_scale = 4;
*/
public double getConvResultScale() {
return convResultScale_;
}
/**
*
* The scaling factor multiplied with the convolution result.
*
*
* double conv_result_scale = 4;
*/
public Builder setConvResultScale(double value) {
convResultScale_ = value;
onChanged();
return this;
}
/**
*
* The scaling factor multiplied with the convolution result.
*
*
* double conv_result_scale = 4;
*/
public Builder clearConvResultScale() {
convResultScale_ = 0D;
onChanged();
return this;
}
private long activationMode_ ;
/**
*
* The requested activation (e.g. relu) after the convolution. It is with type
* stream_executor::dnn::ActivationMode.
*
*
* int64 activation_mode = 3;
*/
public long getActivationMode() {
return activationMode_;
}
/**
*
* The requested activation (e.g. relu) after the convolution. It is with type
* stream_executor::dnn::ActivationMode.
*
*
* int64 activation_mode = 3;
*/
public Builder setActivationMode(long value) {
activationMode_ = value;
onChanged();
return this;
}
/**
*
* The requested activation (e.g. relu) after the convolution. It is with type
* stream_executor::dnn::ActivationMode.
*
*
* int64 activation_mode = 3;
*/
public Builder clearActivationMode() {
activationMode_ = 0L;
onChanged();
return this;
}
private double sideInputScale_ ;
/**
*
* The scaling factor multiplied with the side input. If no side input buffer
* is provided, this field must be 0.
*
*
* double side_input_scale = 5;
*/
public double getSideInputScale() {
return sideInputScale_;
}
/**
*
* The scaling factor multiplied with the side input. If no side input buffer
* is provided, this field must be 0.
*
*
* double side_input_scale = 5;
*/
public Builder setSideInputScale(double value) {
sideInputScale_ = value;
onChanged();
return this;
}
/**
*
* The scaling factor multiplied with the side input. If no side input buffer
* is provided, this field must be 0.
*
*
* double side_input_scale = 5;
*/
public Builder clearSideInputScale() {
sideInputScale_ = 0D;
onChanged();
return this;
}
@java.lang.Override
public final Builder setUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.setUnknownFieldsProto3(unknownFields);
}
@java.lang.Override
public final Builder mergeUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.mergeUnknownFields(unknownFields);
}
// @@protoc_insertion_point(builder_scope:xla.gpu.CudnnConvBackendConfig)
}
// @@protoc_insertion_point(class_scope:xla.gpu.CudnnConvBackendConfig)
private static final xla.gpu.BackendConfigs.CudnnConvBackendConfig DEFAULT_INSTANCE;
static {
DEFAULT_INSTANCE = new xla.gpu.BackendConfigs.CudnnConvBackendConfig();
}
public static xla.gpu.BackendConfigs.CudnnConvBackendConfig getDefaultInstance() {
return DEFAULT_INSTANCE;
}
private static final com.google.protobuf.Parser
PARSER = new com.google.protobuf.AbstractParser() {
@java.lang.Override
public CudnnConvBackendConfig parsePartialFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return new CudnnConvBackendConfig(input, extensionRegistry);
}
};
public static com.google.protobuf.Parser parser() {
return PARSER;
}
@java.lang.Override
public com.google.protobuf.Parser getParserForType() {
return PARSER;
}
@java.lang.Override
public xla.gpu.BackendConfigs.CudnnConvBackendConfig getDefaultInstanceForType() {
return DEFAULT_INSTANCE;
}
}
private static final com.google.protobuf.Descriptors.Descriptor
internal_static_xla_gpu_CudnnConvBackendConfig_descriptor;
private static final
com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internal_static_xla_gpu_CudnnConvBackendConfig_fieldAccessorTable;
public static com.google.protobuf.Descriptors.FileDescriptor
getDescriptor() {
return descriptor;
}
private static com.google.protobuf.Descriptors.FileDescriptor
descriptor;
static {
java.lang.String[] descriptorData = {
"\n9tensorflow/compiler/xla/service/gpu/ba" +
"ckend_configs.proto\022\007xla.gpu\"\225\001\n\026CudnnCo" +
"nvBackendConfig\022\021\n\talgorithm\030\001 \001(\003\022\032\n\022te" +
"nsor_ops_enabled\030\002 \001(\010\022\031\n\021conv_result_sc" +
"ale\030\004 \001(\001\022\027\n\017activation_mode\030\003 \001(\003\022\030\n\020si" +
"de_input_scale\030\005 \001(\001b\006proto3"
};
com.google.protobuf.Descriptors.FileDescriptor.InternalDescriptorAssigner assigner =
new com.google.protobuf.Descriptors.FileDescriptor. InternalDescriptorAssigner() {
public com.google.protobuf.ExtensionRegistry assignDescriptors(
com.google.protobuf.Descriptors.FileDescriptor root) {
descriptor = root;
return null;
}
};
com.google.protobuf.Descriptors.FileDescriptor
.internalBuildGeneratedFileFrom(descriptorData,
new com.google.protobuf.Descriptors.FileDescriptor[] {
}, assigner);
internal_static_xla_gpu_CudnnConvBackendConfig_descriptor =
getDescriptor().getMessageTypes().get(0);
internal_static_xla_gpu_CudnnConvBackendConfig_fieldAccessorTable = new
com.google.protobuf.GeneratedMessageV3.FieldAccessorTable(
internal_static_xla_gpu_CudnnConvBackendConfig_descriptor,
new java.lang.String[] { "Algorithm", "TensorOpsEnabled", "ConvResultScale", "ActivationMode", "SideInputScale", });
}
// @@protoc_insertion_point(outer_class_scope)
}