All Downloads are FREE. Search and download functionalities are using the official Maven repository.

xla.gpu.BackendConfigs Maven / Gradle / Ivy

The newest version!
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow/compiler/xla/service/gpu/backend_configs.proto

package xla.gpu;

public final class BackendConfigs {
  private BackendConfigs() {}
  public static void registerAllExtensions(
      com.google.protobuf.ExtensionRegistryLite registry) {
  }

  public static void registerAllExtensions(
      com.google.protobuf.ExtensionRegistry registry) {
    registerAllExtensions(
        (com.google.protobuf.ExtensionRegistryLite) registry);
  }
  public interface CudnnConvBackendConfigOrBuilder extends
      // @@protoc_insertion_point(interface_extends:xla.gpu.CudnnConvBackendConfig)
      com.google.protobuf.MessageOrBuilder {

    /**
     * 
     * Opaque algorithm number of cudnn algorithm chosen for this conv.
     * 
* * int64 algorithm = 1; */ long getAlgorithm(); /** *
     * Whether we may use tensor cores when running this conv.  Even if this is
     * true, cudnn may choose not to use tensor cores, e.g. because the GPU or
     * selected algorithm doesn't support it.
     * 
* * bool tensor_ops_enabled = 2; */ boolean getTensorOpsEnabled(); /** *
     * The scaling factor multiplied with the convolution result.
     * 
* * double conv_result_scale = 4; */ double getConvResultScale(); /** *
     * The requested activation (e.g. relu) after the convolution. It is with type
     * stream_executor::dnn::ActivationMode.
     * 
* * int64 activation_mode = 3; */ long getActivationMode(); /** *
     * The scaling factor multiplied with the side input. If no side input buffer
     * is provided, this field must be 0.
     * 
* * double side_input_scale = 5; */ double getSideInputScale(); } /** *
   * Backend config for a convolution that runs through cudnn.
   * 
* * Protobuf type {@code xla.gpu.CudnnConvBackendConfig} */ public static final class CudnnConvBackendConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:xla.gpu.CudnnConvBackendConfig) CudnnConvBackendConfigOrBuilder { private static final long serialVersionUID = 0L; // Use CudnnConvBackendConfig.newBuilder() to construct. private CudnnConvBackendConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private CudnnConvBackendConfig() { algorithm_ = 0L; tensorOpsEnabled_ = false; convResultScale_ = 0D; activationMode_ = 0L; sideInputScale_ = 0D; } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private CudnnConvBackendConfig( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { algorithm_ = input.readInt64(); break; } case 16: { tensorOpsEnabled_ = input.readBool(); break; } case 24: { activationMode_ = input.readInt64(); break; } case 33: { convResultScale_ = input.readDouble(); break; } case 41: { sideInputScale_ = input.readDouble(); break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return xla.gpu.BackendConfigs.internal_static_xla_gpu_CudnnConvBackendConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return xla.gpu.BackendConfigs.internal_static_xla_gpu_CudnnConvBackendConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( xla.gpu.BackendConfigs.CudnnConvBackendConfig.class, xla.gpu.BackendConfigs.CudnnConvBackendConfig.Builder.class); } public static final int ALGORITHM_FIELD_NUMBER = 1; private long algorithm_; /** *
     * Opaque algorithm number of cudnn algorithm chosen for this conv.
     * 
* * int64 algorithm = 1; */ public long getAlgorithm() { return algorithm_; } public static final int TENSOR_OPS_ENABLED_FIELD_NUMBER = 2; private boolean tensorOpsEnabled_; /** *
     * Whether we may use tensor cores when running this conv.  Even if this is
     * true, cudnn may choose not to use tensor cores, e.g. because the GPU or
     * selected algorithm doesn't support it.
     * 
* * bool tensor_ops_enabled = 2; */ public boolean getTensorOpsEnabled() { return tensorOpsEnabled_; } public static final int CONV_RESULT_SCALE_FIELD_NUMBER = 4; private double convResultScale_; /** *
     * The scaling factor multiplied with the convolution result.
     * 
* * double conv_result_scale = 4; */ public double getConvResultScale() { return convResultScale_; } public static final int ACTIVATION_MODE_FIELD_NUMBER = 3; private long activationMode_; /** *
     * The requested activation (e.g. relu) after the convolution. It is with type
     * stream_executor::dnn::ActivationMode.
     * 
* * int64 activation_mode = 3; */ public long getActivationMode() { return activationMode_; } public static final int SIDE_INPUT_SCALE_FIELD_NUMBER = 5; private double sideInputScale_; /** *
     * The scaling factor multiplied with the side input. If no side input buffer
     * is provided, this field must be 0.
     * 
* * double side_input_scale = 5; */ public double getSideInputScale() { return sideInputScale_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (algorithm_ != 0L) { output.writeInt64(1, algorithm_); } if (tensorOpsEnabled_ != false) { output.writeBool(2, tensorOpsEnabled_); } if (activationMode_ != 0L) { output.writeInt64(3, activationMode_); } if (convResultScale_ != 0D) { output.writeDouble(4, convResultScale_); } if (sideInputScale_ != 0D) { output.writeDouble(5, sideInputScale_); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (algorithm_ != 0L) { size += com.google.protobuf.CodedOutputStream .computeInt64Size(1, algorithm_); } if (tensorOpsEnabled_ != false) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(2, tensorOpsEnabled_); } if (activationMode_ != 0L) { size += com.google.protobuf.CodedOutputStream .computeInt64Size(3, activationMode_); } if (convResultScale_ != 0D) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(4, convResultScale_); } if (sideInputScale_ != 0D) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(5, sideInputScale_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof xla.gpu.BackendConfigs.CudnnConvBackendConfig)) { return super.equals(obj); } xla.gpu.BackendConfigs.CudnnConvBackendConfig other = (xla.gpu.BackendConfigs.CudnnConvBackendConfig) obj; boolean result = true; result = result && (getAlgorithm() == other.getAlgorithm()); result = result && (getTensorOpsEnabled() == other.getTensorOpsEnabled()); result = result && ( java.lang.Double.doubleToLongBits(getConvResultScale()) == java.lang.Double.doubleToLongBits( other.getConvResultScale())); result = result && (getActivationMode() == other.getActivationMode()); result = result && ( java.lang.Double.doubleToLongBits(getSideInputScale()) == java.lang.Double.doubleToLongBits( other.getSideInputScale())); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + ALGORITHM_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getAlgorithm()); hash = (37 * hash) + TENSOR_OPS_ENABLED_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getTensorOpsEnabled()); hash = (37 * hash) + CONV_RESULT_SCALE_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getConvResultScale())); hash = (37 * hash) + ACTIVATION_MODE_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getActivationMode()); hash = (37 * hash) + SIDE_INPUT_SCALE_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getSideInputScale())); hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(xla.gpu.BackendConfigs.CudnnConvBackendConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Backend config for a convolution that runs through cudnn.
     * 
* * Protobuf type {@code xla.gpu.CudnnConvBackendConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:xla.gpu.CudnnConvBackendConfig) xla.gpu.BackendConfigs.CudnnConvBackendConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return xla.gpu.BackendConfigs.internal_static_xla_gpu_CudnnConvBackendConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return xla.gpu.BackendConfigs.internal_static_xla_gpu_CudnnConvBackendConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( xla.gpu.BackendConfigs.CudnnConvBackendConfig.class, xla.gpu.BackendConfigs.CudnnConvBackendConfig.Builder.class); } // Construct using xla.gpu.BackendConfigs.CudnnConvBackendConfig.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); algorithm_ = 0L; tensorOpsEnabled_ = false; convResultScale_ = 0D; activationMode_ = 0L; sideInputScale_ = 0D; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return xla.gpu.BackendConfigs.internal_static_xla_gpu_CudnnConvBackendConfig_descriptor; } @java.lang.Override public xla.gpu.BackendConfigs.CudnnConvBackendConfig getDefaultInstanceForType() { return xla.gpu.BackendConfigs.CudnnConvBackendConfig.getDefaultInstance(); } @java.lang.Override public xla.gpu.BackendConfigs.CudnnConvBackendConfig build() { xla.gpu.BackendConfigs.CudnnConvBackendConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public xla.gpu.BackendConfigs.CudnnConvBackendConfig buildPartial() { xla.gpu.BackendConfigs.CudnnConvBackendConfig result = new xla.gpu.BackendConfigs.CudnnConvBackendConfig(this); result.algorithm_ = algorithm_; result.tensorOpsEnabled_ = tensorOpsEnabled_; result.convResultScale_ = convResultScale_; result.activationMode_ = activationMode_; result.sideInputScale_ = sideInputScale_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof xla.gpu.BackendConfigs.CudnnConvBackendConfig) { return mergeFrom((xla.gpu.BackendConfigs.CudnnConvBackendConfig)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(xla.gpu.BackendConfigs.CudnnConvBackendConfig other) { if (other == xla.gpu.BackendConfigs.CudnnConvBackendConfig.getDefaultInstance()) return this; if (other.getAlgorithm() != 0L) { setAlgorithm(other.getAlgorithm()); } if (other.getTensorOpsEnabled() != false) { setTensorOpsEnabled(other.getTensorOpsEnabled()); } if (other.getConvResultScale() != 0D) { setConvResultScale(other.getConvResultScale()); } if (other.getActivationMode() != 0L) { setActivationMode(other.getActivationMode()); } if (other.getSideInputScale() != 0D) { setSideInputScale(other.getSideInputScale()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { xla.gpu.BackendConfigs.CudnnConvBackendConfig parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (xla.gpu.BackendConfigs.CudnnConvBackendConfig) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private long algorithm_ ; /** *
       * Opaque algorithm number of cudnn algorithm chosen for this conv.
       * 
* * int64 algorithm = 1; */ public long getAlgorithm() { return algorithm_; } /** *
       * Opaque algorithm number of cudnn algorithm chosen for this conv.
       * 
* * int64 algorithm = 1; */ public Builder setAlgorithm(long value) { algorithm_ = value; onChanged(); return this; } /** *
       * Opaque algorithm number of cudnn algorithm chosen for this conv.
       * 
* * int64 algorithm = 1; */ public Builder clearAlgorithm() { algorithm_ = 0L; onChanged(); return this; } private boolean tensorOpsEnabled_ ; /** *
       * Whether we may use tensor cores when running this conv.  Even if this is
       * true, cudnn may choose not to use tensor cores, e.g. because the GPU or
       * selected algorithm doesn't support it.
       * 
* * bool tensor_ops_enabled = 2; */ public boolean getTensorOpsEnabled() { return tensorOpsEnabled_; } /** *
       * Whether we may use tensor cores when running this conv.  Even if this is
       * true, cudnn may choose not to use tensor cores, e.g. because the GPU or
       * selected algorithm doesn't support it.
       * 
* * bool tensor_ops_enabled = 2; */ public Builder setTensorOpsEnabled(boolean value) { tensorOpsEnabled_ = value; onChanged(); return this; } /** *
       * Whether we may use tensor cores when running this conv.  Even if this is
       * true, cudnn may choose not to use tensor cores, e.g. because the GPU or
       * selected algorithm doesn't support it.
       * 
* * bool tensor_ops_enabled = 2; */ public Builder clearTensorOpsEnabled() { tensorOpsEnabled_ = false; onChanged(); return this; } private double convResultScale_ ; /** *
       * The scaling factor multiplied with the convolution result.
       * 
* * double conv_result_scale = 4; */ public double getConvResultScale() { return convResultScale_; } /** *
       * The scaling factor multiplied with the convolution result.
       * 
* * double conv_result_scale = 4; */ public Builder setConvResultScale(double value) { convResultScale_ = value; onChanged(); return this; } /** *
       * The scaling factor multiplied with the convolution result.
       * 
* * double conv_result_scale = 4; */ public Builder clearConvResultScale() { convResultScale_ = 0D; onChanged(); return this; } private long activationMode_ ; /** *
       * The requested activation (e.g. relu) after the convolution. It is with type
       * stream_executor::dnn::ActivationMode.
       * 
* * int64 activation_mode = 3; */ public long getActivationMode() { return activationMode_; } /** *
       * The requested activation (e.g. relu) after the convolution. It is with type
       * stream_executor::dnn::ActivationMode.
       * 
* * int64 activation_mode = 3; */ public Builder setActivationMode(long value) { activationMode_ = value; onChanged(); return this; } /** *
       * The requested activation (e.g. relu) after the convolution. It is with type
       * stream_executor::dnn::ActivationMode.
       * 
* * int64 activation_mode = 3; */ public Builder clearActivationMode() { activationMode_ = 0L; onChanged(); return this; } private double sideInputScale_ ; /** *
       * The scaling factor multiplied with the side input. If no side input buffer
       * is provided, this field must be 0.
       * 
* * double side_input_scale = 5; */ public double getSideInputScale() { return sideInputScale_; } /** *
       * The scaling factor multiplied with the side input. If no side input buffer
       * is provided, this field must be 0.
       * 
* * double side_input_scale = 5; */ public Builder setSideInputScale(double value) { sideInputScale_ = value; onChanged(); return this; } /** *
       * The scaling factor multiplied with the side input. If no side input buffer
       * is provided, this field must be 0.
       * 
* * double side_input_scale = 5; */ public Builder clearSideInputScale() { sideInputScale_ = 0D; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:xla.gpu.CudnnConvBackendConfig) } // @@protoc_insertion_point(class_scope:xla.gpu.CudnnConvBackendConfig) private static final xla.gpu.BackendConfigs.CudnnConvBackendConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new xla.gpu.BackendConfigs.CudnnConvBackendConfig(); } public static xla.gpu.BackendConfigs.CudnnConvBackendConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public CudnnConvBackendConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new CudnnConvBackendConfig(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public xla.gpu.BackendConfigs.CudnnConvBackendConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } private static final com.google.protobuf.Descriptors.Descriptor internal_static_xla_gpu_CudnnConvBackendConfig_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_xla_gpu_CudnnConvBackendConfig_fieldAccessorTable; public static com.google.protobuf.Descriptors.FileDescriptor getDescriptor() { return descriptor; } private static com.google.protobuf.Descriptors.FileDescriptor descriptor; static { java.lang.String[] descriptorData = { "\n9tensorflow/compiler/xla/service/gpu/ba" + "ckend_configs.proto\022\007xla.gpu\"\225\001\n\026CudnnCo" + "nvBackendConfig\022\021\n\talgorithm\030\001 \001(\003\022\032\n\022te" + "nsor_ops_enabled\030\002 \001(\010\022\031\n\021conv_result_sc" + "ale\030\004 \001(\001\022\027\n\017activation_mode\030\003 \001(\003\022\030\n\020si" + "de_input_scale\030\005 \001(\001b\006proto3" }; com.google.protobuf.Descriptors.FileDescriptor.InternalDescriptorAssigner assigner = new com.google.protobuf.Descriptors.FileDescriptor. InternalDescriptorAssigner() { public com.google.protobuf.ExtensionRegistry assignDescriptors( com.google.protobuf.Descriptors.FileDescriptor root) { descriptor = root; return null; } }; com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, new com.google.protobuf.Descriptors.FileDescriptor[] { }, assigner); internal_static_xla_gpu_CudnnConvBackendConfig_descriptor = getDescriptor().getMessageTypes().get(0); internal_static_xla_gpu_CudnnConvBackendConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_xla_gpu_CudnnConvBackendConfig_descriptor, new java.lang.String[] { "Algorithm", "TensorOpsEnabled", "ConvResultScale", "ActivationMode", "SideInputScale", }); } // @@protoc_insertion_point(outer_class_scope) }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy