All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.tensorflow.framework.TreeMetadata Maven / Gradle / Ivy

// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow/core/kernels/boosted_trees/boosted_trees.proto

package org.tensorflow.framework;

/**
 * Protobuf type {@code tensorflow.boosted_trees.TreeMetadata}
 */
public  final class TreeMetadata extends
    com.google.protobuf.GeneratedMessageV3 implements
    // @@protoc_insertion_point(message_implements:tensorflow.boosted_trees.TreeMetadata)
    TreeMetadataOrBuilder {
private static final long serialVersionUID = 0L;
  // Use TreeMetadata.newBuilder() to construct.
  private TreeMetadata(com.google.protobuf.GeneratedMessageV3.Builder builder) {
    super(builder);
  }
  private TreeMetadata() {
    numLayersGrown_ = 0;
    isFinalized_ = false;
    postPrunedNodesMeta_ = java.util.Collections.emptyList();
  }

  @java.lang.Override
  public final com.google.protobuf.UnknownFieldSet
  getUnknownFields() {
    return this.unknownFields;
  }
  private TreeMetadata(
      com.google.protobuf.CodedInputStream input,
      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
      throws com.google.protobuf.InvalidProtocolBufferException {
    this();
    if (extensionRegistry == null) {
      throw new java.lang.NullPointerException();
    }
    int mutable_bitField0_ = 0;
    com.google.protobuf.UnknownFieldSet.Builder unknownFields =
        com.google.protobuf.UnknownFieldSet.newBuilder();
    try {
      boolean done = false;
      while (!done) {
        int tag = input.readTag();
        switch (tag) {
          case 0:
            done = true;
            break;
          case 16: {

            numLayersGrown_ = input.readInt32();
            break;
          }
          case 24: {

            isFinalized_ = input.readBool();
            break;
          }
          case 34: {
            if (!((mutable_bitField0_ & 0x00000004) == 0x00000004)) {
              postPrunedNodesMeta_ = new java.util.ArrayList();
              mutable_bitField0_ |= 0x00000004;
            }
            postPrunedNodesMeta_.add(
                input.readMessage(org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.parser(), extensionRegistry));
            break;
          }
          default: {
            if (!parseUnknownFieldProto3(
                input, unknownFields, extensionRegistry, tag)) {
              done = true;
            }
            break;
          }
        }
      }
    } catch (com.google.protobuf.InvalidProtocolBufferException e) {
      throw e.setUnfinishedMessage(this);
    } catch (java.io.IOException e) {
      throw new com.google.protobuf.InvalidProtocolBufferException(
          e).setUnfinishedMessage(this);
    } finally {
      if (((mutable_bitField0_ & 0x00000004) == 0x00000004)) {
        postPrunedNodesMeta_ = java.util.Collections.unmodifiableList(postPrunedNodesMeta_);
      }
      this.unknownFields = unknownFields.build();
      makeExtensionsImmutable();
    }
  }
  public static final com.google.protobuf.Descriptors.Descriptor
      getDescriptor() {
    return org.tensorflow.framework.BoostedTreesProtos.internal_static_tensorflow_boosted_trees_TreeMetadata_descriptor;
  }

  @java.lang.Override
  protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
      internalGetFieldAccessorTable() {
    return org.tensorflow.framework.BoostedTreesProtos.internal_static_tensorflow_boosted_trees_TreeMetadata_fieldAccessorTable
        .ensureFieldAccessorsInitialized(
            org.tensorflow.framework.TreeMetadata.class, org.tensorflow.framework.TreeMetadata.Builder.class);
  }

  public interface PostPruneNodeUpdateOrBuilder extends
      // @@protoc_insertion_point(interface_extends:tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate)
      com.google.protobuf.MessageOrBuilder {

    /**
     * int32 new_node_id = 1;
     */
    int getNewNodeId();

    /**
     * float logit_change = 2;
     */
    float getLogitChange();
  }
  /**
   * Protobuf type {@code tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate}
   */
  public  static final class PostPruneNodeUpdate extends
      com.google.protobuf.GeneratedMessageV3 implements
      // @@protoc_insertion_point(message_implements:tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate)
      PostPruneNodeUpdateOrBuilder {
  private static final long serialVersionUID = 0L;
    // Use PostPruneNodeUpdate.newBuilder() to construct.
    private PostPruneNodeUpdate(com.google.protobuf.GeneratedMessageV3.Builder builder) {
      super(builder);
    }
    private PostPruneNodeUpdate() {
      newNodeId_ = 0;
      logitChange_ = 0F;
    }

    @java.lang.Override
    public final com.google.protobuf.UnknownFieldSet
    getUnknownFields() {
      return this.unknownFields;
    }
    private PostPruneNodeUpdate(
        com.google.protobuf.CodedInputStream input,
        com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        throws com.google.protobuf.InvalidProtocolBufferException {
      this();
      if (extensionRegistry == null) {
        throw new java.lang.NullPointerException();
      }
      int mutable_bitField0_ = 0;
      com.google.protobuf.UnknownFieldSet.Builder unknownFields =
          com.google.protobuf.UnknownFieldSet.newBuilder();
      try {
        boolean done = false;
        while (!done) {
          int tag = input.readTag();
          switch (tag) {
            case 0:
              done = true;
              break;
            case 8: {

              newNodeId_ = input.readInt32();
              break;
            }
            case 21: {

              logitChange_ = input.readFloat();
              break;
            }
            default: {
              if (!parseUnknownFieldProto3(
                  input, unknownFields, extensionRegistry, tag)) {
                done = true;
              }
              break;
            }
          }
        }
      } catch (com.google.protobuf.InvalidProtocolBufferException e) {
        throw e.setUnfinishedMessage(this);
      } catch (java.io.IOException e) {
        throw new com.google.protobuf.InvalidProtocolBufferException(
            e).setUnfinishedMessage(this);
      } finally {
        this.unknownFields = unknownFields.build();
        makeExtensionsImmutable();
      }
    }
    public static final com.google.protobuf.Descriptors.Descriptor
        getDescriptor() {
      return org.tensorflow.framework.BoostedTreesProtos.internal_static_tensorflow_boosted_trees_TreeMetadata_PostPruneNodeUpdate_descriptor;
    }

    @java.lang.Override
    protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
        internalGetFieldAccessorTable() {
      return org.tensorflow.framework.BoostedTreesProtos.internal_static_tensorflow_boosted_trees_TreeMetadata_PostPruneNodeUpdate_fieldAccessorTable
          .ensureFieldAccessorsInitialized(
              org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.class, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.Builder.class);
    }

    public static final int NEW_NODE_ID_FIELD_NUMBER = 1;
    private int newNodeId_;
    /**
     * int32 new_node_id = 1;
     */
    public int getNewNodeId() {
      return newNodeId_;
    }

    public static final int LOGIT_CHANGE_FIELD_NUMBER = 2;
    private float logitChange_;
    /**
     * float logit_change = 2;
     */
    public float getLogitChange() {
      return logitChange_;
    }

    private byte memoizedIsInitialized = -1;
    @java.lang.Override
    public final boolean isInitialized() {
      byte isInitialized = memoizedIsInitialized;
      if (isInitialized == 1) return true;
      if (isInitialized == 0) return false;

      memoizedIsInitialized = 1;
      return true;
    }

    @java.lang.Override
    public void writeTo(com.google.protobuf.CodedOutputStream output)
                        throws java.io.IOException {
      if (newNodeId_ != 0) {
        output.writeInt32(1, newNodeId_);
      }
      if (logitChange_ != 0F) {
        output.writeFloat(2, logitChange_);
      }
      unknownFields.writeTo(output);
    }

    @java.lang.Override
    public int getSerializedSize() {
      int size = memoizedSize;
      if (size != -1) return size;

      size = 0;
      if (newNodeId_ != 0) {
        size += com.google.protobuf.CodedOutputStream
          .computeInt32Size(1, newNodeId_);
      }
      if (logitChange_ != 0F) {
        size += com.google.protobuf.CodedOutputStream
          .computeFloatSize(2, logitChange_);
      }
      size += unknownFields.getSerializedSize();
      memoizedSize = size;
      return size;
    }

    @java.lang.Override
    public boolean equals(final java.lang.Object obj) {
      if (obj == this) {
       return true;
      }
      if (!(obj instanceof org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate)) {
        return super.equals(obj);
      }
      org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate other = (org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate) obj;

      boolean result = true;
      result = result && (getNewNodeId()
          == other.getNewNodeId());
      result = result && (
          java.lang.Float.floatToIntBits(getLogitChange())
          == java.lang.Float.floatToIntBits(
              other.getLogitChange()));
      result = result && unknownFields.equals(other.unknownFields);
      return result;
    }

    @java.lang.Override
    public int hashCode() {
      if (memoizedHashCode != 0) {
        return memoizedHashCode;
      }
      int hash = 41;
      hash = (19 * hash) + getDescriptor().hashCode();
      hash = (37 * hash) + NEW_NODE_ID_FIELD_NUMBER;
      hash = (53 * hash) + getNewNodeId();
      hash = (37 * hash) + LOGIT_CHANGE_FIELD_NUMBER;
      hash = (53 * hash) + java.lang.Float.floatToIntBits(
          getLogitChange());
      hash = (29 * hash) + unknownFields.hashCode();
      memoizedHashCode = hash;
      return hash;
    }

    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseFrom(
        java.nio.ByteBuffer data)
        throws com.google.protobuf.InvalidProtocolBufferException {
      return PARSER.parseFrom(data);
    }
    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseFrom(
        java.nio.ByteBuffer data,
        com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        throws com.google.protobuf.InvalidProtocolBufferException {
      return PARSER.parseFrom(data, extensionRegistry);
    }
    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseFrom(
        com.google.protobuf.ByteString data)
        throws com.google.protobuf.InvalidProtocolBufferException {
      return PARSER.parseFrom(data);
    }
    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseFrom(
        com.google.protobuf.ByteString data,
        com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        throws com.google.protobuf.InvalidProtocolBufferException {
      return PARSER.parseFrom(data, extensionRegistry);
    }
    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseFrom(byte[] data)
        throws com.google.protobuf.InvalidProtocolBufferException {
      return PARSER.parseFrom(data);
    }
    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseFrom(
        byte[] data,
        com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        throws com.google.protobuf.InvalidProtocolBufferException {
      return PARSER.parseFrom(data, extensionRegistry);
    }
    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseFrom(java.io.InputStream input)
        throws java.io.IOException {
      return com.google.protobuf.GeneratedMessageV3
          .parseWithIOException(PARSER, input);
    }
    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseFrom(
        java.io.InputStream input,
        com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        throws java.io.IOException {
      return com.google.protobuf.GeneratedMessageV3
          .parseWithIOException(PARSER, input, extensionRegistry);
    }
    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseDelimitedFrom(java.io.InputStream input)
        throws java.io.IOException {
      return com.google.protobuf.GeneratedMessageV3
          .parseDelimitedWithIOException(PARSER, input);
    }
    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseDelimitedFrom(
        java.io.InputStream input,
        com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        throws java.io.IOException {
      return com.google.protobuf.GeneratedMessageV3
          .parseDelimitedWithIOException(PARSER, input, extensionRegistry);
    }
    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseFrom(
        com.google.protobuf.CodedInputStream input)
        throws java.io.IOException {
      return com.google.protobuf.GeneratedMessageV3
          .parseWithIOException(PARSER, input);
    }
    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parseFrom(
        com.google.protobuf.CodedInputStream input,
        com.google.protobuf.ExtensionRegistryLite extensionRegistry)
        throws java.io.IOException {
      return com.google.protobuf.GeneratedMessageV3
          .parseWithIOException(PARSER, input, extensionRegistry);
    }

    @java.lang.Override
    public Builder newBuilderForType() { return newBuilder(); }
    public static Builder newBuilder() {
      return DEFAULT_INSTANCE.toBuilder();
    }
    public static Builder newBuilder(org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate prototype) {
      return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
    }
    @java.lang.Override
    public Builder toBuilder() {
      return this == DEFAULT_INSTANCE
          ? new Builder() : new Builder().mergeFrom(this);
    }

    @java.lang.Override
    protected Builder newBuilderForType(
        com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
      Builder builder = new Builder(parent);
      return builder;
    }
    /**
     * Protobuf type {@code tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate}
     */
    public static final class Builder extends
        com.google.protobuf.GeneratedMessageV3.Builder implements
        // @@protoc_insertion_point(builder_implements:tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate)
        org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdateOrBuilder {
      public static final com.google.protobuf.Descriptors.Descriptor
          getDescriptor() {
        return org.tensorflow.framework.BoostedTreesProtos.internal_static_tensorflow_boosted_trees_TreeMetadata_PostPruneNodeUpdate_descriptor;
      }

      @java.lang.Override
      protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
          internalGetFieldAccessorTable() {
        return org.tensorflow.framework.BoostedTreesProtos.internal_static_tensorflow_boosted_trees_TreeMetadata_PostPruneNodeUpdate_fieldAccessorTable
            .ensureFieldAccessorsInitialized(
                org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.class, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.Builder.class);
      }

      // Construct using org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.newBuilder()
      private Builder() {
        maybeForceBuilderInitialization();
      }

      private Builder(
          com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
        super(parent);
        maybeForceBuilderInitialization();
      }
      private void maybeForceBuilderInitialization() {
        if (com.google.protobuf.GeneratedMessageV3
                .alwaysUseFieldBuilders) {
        }
      }
      @java.lang.Override
      public Builder clear() {
        super.clear();
        newNodeId_ = 0;

        logitChange_ = 0F;

        return this;
      }

      @java.lang.Override
      public com.google.protobuf.Descriptors.Descriptor
          getDescriptorForType() {
        return org.tensorflow.framework.BoostedTreesProtos.internal_static_tensorflow_boosted_trees_TreeMetadata_PostPruneNodeUpdate_descriptor;
      }

      @java.lang.Override
      public org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate getDefaultInstanceForType() {
        return org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.getDefaultInstance();
      }

      @java.lang.Override
      public org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate build() {
        org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate result = buildPartial();
        if (!result.isInitialized()) {
          throw newUninitializedMessageException(result);
        }
        return result;
      }

      @java.lang.Override
      public org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate buildPartial() {
        org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate result = new org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate(this);
        result.newNodeId_ = newNodeId_;
        result.logitChange_ = logitChange_;
        onBuilt();
        return result;
      }

      @java.lang.Override
      public Builder clone() {
        return (Builder) super.clone();
      }
      @java.lang.Override
      public Builder setField(
          com.google.protobuf.Descriptors.FieldDescriptor field,
          java.lang.Object value) {
        return (Builder) super.setField(field, value);
      }
      @java.lang.Override
      public Builder clearField(
          com.google.protobuf.Descriptors.FieldDescriptor field) {
        return (Builder) super.clearField(field);
      }
      @java.lang.Override
      public Builder clearOneof(
          com.google.protobuf.Descriptors.OneofDescriptor oneof) {
        return (Builder) super.clearOneof(oneof);
      }
      @java.lang.Override
      public Builder setRepeatedField(
          com.google.protobuf.Descriptors.FieldDescriptor field,
          int index, java.lang.Object value) {
        return (Builder) super.setRepeatedField(field, index, value);
      }
      @java.lang.Override
      public Builder addRepeatedField(
          com.google.protobuf.Descriptors.FieldDescriptor field,
          java.lang.Object value) {
        return (Builder) super.addRepeatedField(field, value);
      }
      @java.lang.Override
      public Builder mergeFrom(com.google.protobuf.Message other) {
        if (other instanceof org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate) {
          return mergeFrom((org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate)other);
        } else {
          super.mergeFrom(other);
          return this;
        }
      }

      public Builder mergeFrom(org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate other) {
        if (other == org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.getDefaultInstance()) return this;
        if (other.getNewNodeId() != 0) {
          setNewNodeId(other.getNewNodeId());
        }
        if (other.getLogitChange() != 0F) {
          setLogitChange(other.getLogitChange());
        }
        this.mergeUnknownFields(other.unknownFields);
        onChanged();
        return this;
      }

      @java.lang.Override
      public final boolean isInitialized() {
        return true;
      }

      @java.lang.Override
      public Builder mergeFrom(
          com.google.protobuf.CodedInputStream input,
          com.google.protobuf.ExtensionRegistryLite extensionRegistry)
          throws java.io.IOException {
        org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate parsedMessage = null;
        try {
          parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry);
        } catch (com.google.protobuf.InvalidProtocolBufferException e) {
          parsedMessage = (org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate) e.getUnfinishedMessage();
          throw e.unwrapIOException();
        } finally {
          if (parsedMessage != null) {
            mergeFrom(parsedMessage);
          }
        }
        return this;
      }

      private int newNodeId_ ;
      /**
       * int32 new_node_id = 1;
       */
      public int getNewNodeId() {
        return newNodeId_;
      }
      /**
       * int32 new_node_id = 1;
       */
      public Builder setNewNodeId(int value) {
        
        newNodeId_ = value;
        onChanged();
        return this;
      }
      /**
       * int32 new_node_id = 1;
       */
      public Builder clearNewNodeId() {
        
        newNodeId_ = 0;
        onChanged();
        return this;
      }

      private float logitChange_ ;
      /**
       * float logit_change = 2;
       */
      public float getLogitChange() {
        return logitChange_;
      }
      /**
       * float logit_change = 2;
       */
      public Builder setLogitChange(float value) {
        
        logitChange_ = value;
        onChanged();
        return this;
      }
      /**
       * float logit_change = 2;
       */
      public Builder clearLogitChange() {
        
        logitChange_ = 0F;
        onChanged();
        return this;
      }
      @java.lang.Override
      public final Builder setUnknownFields(
          final com.google.protobuf.UnknownFieldSet unknownFields) {
        return super.setUnknownFieldsProto3(unknownFields);
      }

      @java.lang.Override
      public final Builder mergeUnknownFields(
          final com.google.protobuf.UnknownFieldSet unknownFields) {
        return super.mergeUnknownFields(unknownFields);
      }


      // @@protoc_insertion_point(builder_scope:tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate)
    }

    // @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate)
    private static final org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate DEFAULT_INSTANCE;
    static {
      DEFAULT_INSTANCE = new org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate();
    }

    public static org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate getDefaultInstance() {
      return DEFAULT_INSTANCE;
    }

    private static final com.google.protobuf.Parser
        PARSER = new com.google.protobuf.AbstractParser() {
      @java.lang.Override
      public PostPruneNodeUpdate parsePartialFrom(
          com.google.protobuf.CodedInputStream input,
          com.google.protobuf.ExtensionRegistryLite extensionRegistry)
          throws com.google.protobuf.InvalidProtocolBufferException {
        return new PostPruneNodeUpdate(input, extensionRegistry);
      }
    };

    public static com.google.protobuf.Parser parser() {
      return PARSER;
    }

    @java.lang.Override
    public com.google.protobuf.Parser getParserForType() {
      return PARSER;
    }

    @java.lang.Override
    public org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate getDefaultInstanceForType() {
      return DEFAULT_INSTANCE;
    }

  }

  private int bitField0_;
  public static final int NUM_LAYERS_GROWN_FIELD_NUMBER = 2;
  private int numLayersGrown_;
  /**
   * 
   * Number of layers grown for this tree.
   * 
* * int32 num_layers_grown = 2; */ public int getNumLayersGrown() { return numLayersGrown_; } public static final int IS_FINALIZED_FIELD_NUMBER = 3; private boolean isFinalized_; /** *
   * Whether the tree is finalized in that no more layers can be grown.
   * 
* * bool is_finalized = 3; */ public boolean getIsFinalized() { return isFinalized_; } public static final int POST_PRUNED_NODES_META_FIELD_NUMBER = 4; private java.util.List postPrunedNodesMeta_; /** *
   * If tree was finalized and post pruning happened, it is possible that cache
   * still refers to some nodes that were deleted or that the node ids changed
   * (e.g. node id 5 became node id 2 due to pruning of the other branch).
   * The mapping below allows us to understand where the old ids now map to and
   * how the values should be adjusted due to post-pruning.
   * The size of the list should be equal to the number of nodes in the tree
   * before post-pruning happened.
   * If the node was pruned, it will have new_node_id equal to the id of a node
   * that this node was collapsed into. For a node that didn't get pruned, it is
   * possible that its id still changed, so new_node_id will have the
   * corresponding id in the pruned tree.
   * If post-pruning didn't happen, or it did and it had no effect (e.g. no
   * nodes got pruned), this list will be empty.
   * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public java.util.List getPostPrunedNodesMetaList() { return postPrunedNodesMeta_; } /** *
   * If tree was finalized and post pruning happened, it is possible that cache
   * still refers to some nodes that were deleted or that the node ids changed
   * (e.g. node id 5 became node id 2 due to pruning of the other branch).
   * The mapping below allows us to understand where the old ids now map to and
   * how the values should be adjusted due to post-pruning.
   * The size of the list should be equal to the number of nodes in the tree
   * before post-pruning happened.
   * If the node was pruned, it will have new_node_id equal to the id of a node
   * that this node was collapsed into. For a node that didn't get pruned, it is
   * possible that its id still changed, so new_node_id will have the
   * corresponding id in the pruned tree.
   * If post-pruning didn't happen, or it did and it had no effect (e.g. no
   * nodes got pruned), this list will be empty.
   * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public java.util.List getPostPrunedNodesMetaOrBuilderList() { return postPrunedNodesMeta_; } /** *
   * If tree was finalized and post pruning happened, it is possible that cache
   * still refers to some nodes that were deleted or that the node ids changed
   * (e.g. node id 5 became node id 2 due to pruning of the other branch).
   * The mapping below allows us to understand where the old ids now map to and
   * how the values should be adjusted due to post-pruning.
   * The size of the list should be equal to the number of nodes in the tree
   * before post-pruning happened.
   * If the node was pruned, it will have new_node_id equal to the id of a node
   * that this node was collapsed into. For a node that didn't get pruned, it is
   * possible that its id still changed, so new_node_id will have the
   * corresponding id in the pruned tree.
   * If post-pruning didn't happen, or it did and it had no effect (e.g. no
   * nodes got pruned), this list will be empty.
   * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public int getPostPrunedNodesMetaCount() { return postPrunedNodesMeta_.size(); } /** *
   * If tree was finalized and post pruning happened, it is possible that cache
   * still refers to some nodes that were deleted or that the node ids changed
   * (e.g. node id 5 became node id 2 due to pruning of the other branch).
   * The mapping below allows us to understand where the old ids now map to and
   * how the values should be adjusted due to post-pruning.
   * The size of the list should be equal to the number of nodes in the tree
   * before post-pruning happened.
   * If the node was pruned, it will have new_node_id equal to the id of a node
   * that this node was collapsed into. For a node that didn't get pruned, it is
   * possible that its id still changed, so new_node_id will have the
   * corresponding id in the pruned tree.
   * If post-pruning didn't happen, or it did and it had no effect (e.g. no
   * nodes got pruned), this list will be empty.
   * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate getPostPrunedNodesMeta(int index) { return postPrunedNodesMeta_.get(index); } /** *
   * If tree was finalized and post pruning happened, it is possible that cache
   * still refers to some nodes that were deleted or that the node ids changed
   * (e.g. node id 5 became node id 2 due to pruning of the other branch).
   * The mapping below allows us to understand where the old ids now map to and
   * how the values should be adjusted due to post-pruning.
   * The size of the list should be equal to the number of nodes in the tree
   * before post-pruning happened.
   * If the node was pruned, it will have new_node_id equal to the id of a node
   * that this node was collapsed into. For a node that didn't get pruned, it is
   * possible that its id still changed, so new_node_id will have the
   * corresponding id in the pruned tree.
   * If post-pruning didn't happen, or it did and it had no effect (e.g. no
   * nodes got pruned), this list will be empty.
   * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdateOrBuilder getPostPrunedNodesMetaOrBuilder( int index) { return postPrunedNodesMeta_.get(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (numLayersGrown_ != 0) { output.writeInt32(2, numLayersGrown_); } if (isFinalized_ != false) { output.writeBool(3, isFinalized_); } for (int i = 0; i < postPrunedNodesMeta_.size(); i++) { output.writeMessage(4, postPrunedNodesMeta_.get(i)); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (numLayersGrown_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(2, numLayersGrown_); } if (isFinalized_ != false) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(3, isFinalized_); } for (int i = 0; i < postPrunedNodesMeta_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(4, postPrunedNodesMeta_.get(i)); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof org.tensorflow.framework.TreeMetadata)) { return super.equals(obj); } org.tensorflow.framework.TreeMetadata other = (org.tensorflow.framework.TreeMetadata) obj; boolean result = true; result = result && (getNumLayersGrown() == other.getNumLayersGrown()); result = result && (getIsFinalized() == other.getIsFinalized()); result = result && getPostPrunedNodesMetaList() .equals(other.getPostPrunedNodesMetaList()); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + NUM_LAYERS_GROWN_FIELD_NUMBER; hash = (53 * hash) + getNumLayersGrown(); hash = (37 * hash) + IS_FINALIZED_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getIsFinalized()); if (getPostPrunedNodesMetaCount() > 0) { hash = (37 * hash) + POST_PRUNED_NODES_META_FIELD_NUMBER; hash = (53 * hash) + getPostPrunedNodesMetaList().hashCode(); } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static org.tensorflow.framework.TreeMetadata parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.TreeMetadata parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.TreeMetadata parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.TreeMetadata parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.TreeMetadata parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.TreeMetadata parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.TreeMetadata parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.framework.TreeMetadata parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.framework.TreeMetadata parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static org.tensorflow.framework.TreeMetadata parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.framework.TreeMetadata parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.framework.TreeMetadata parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(org.tensorflow.framework.TreeMetadata prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code tensorflow.boosted_trees.TreeMetadata} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.boosted_trees.TreeMetadata) org.tensorflow.framework.TreeMetadataOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.framework.BoostedTreesProtos.internal_static_tensorflow_boosted_trees_TreeMetadata_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.framework.BoostedTreesProtos.internal_static_tensorflow_boosted_trees_TreeMetadata_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.framework.TreeMetadata.class, org.tensorflow.framework.TreeMetadata.Builder.class); } // Construct using org.tensorflow.framework.TreeMetadata.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getPostPrunedNodesMetaFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); numLayersGrown_ = 0; isFinalized_ = false; if (postPrunedNodesMetaBuilder_ == null) { postPrunedNodesMeta_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000004); } else { postPrunedNodesMetaBuilder_.clear(); } return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return org.tensorflow.framework.BoostedTreesProtos.internal_static_tensorflow_boosted_trees_TreeMetadata_descriptor; } @java.lang.Override public org.tensorflow.framework.TreeMetadata getDefaultInstanceForType() { return org.tensorflow.framework.TreeMetadata.getDefaultInstance(); } @java.lang.Override public org.tensorflow.framework.TreeMetadata build() { org.tensorflow.framework.TreeMetadata result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public org.tensorflow.framework.TreeMetadata buildPartial() { org.tensorflow.framework.TreeMetadata result = new org.tensorflow.framework.TreeMetadata(this); int from_bitField0_ = bitField0_; int to_bitField0_ = 0; result.numLayersGrown_ = numLayersGrown_; result.isFinalized_ = isFinalized_; if (postPrunedNodesMetaBuilder_ == null) { if (((bitField0_ & 0x00000004) == 0x00000004)) { postPrunedNodesMeta_ = java.util.Collections.unmodifiableList(postPrunedNodesMeta_); bitField0_ = (bitField0_ & ~0x00000004); } result.postPrunedNodesMeta_ = postPrunedNodesMeta_; } else { result.postPrunedNodesMeta_ = postPrunedNodesMetaBuilder_.build(); } result.bitField0_ = to_bitField0_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof org.tensorflow.framework.TreeMetadata) { return mergeFrom((org.tensorflow.framework.TreeMetadata)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(org.tensorflow.framework.TreeMetadata other) { if (other == org.tensorflow.framework.TreeMetadata.getDefaultInstance()) return this; if (other.getNumLayersGrown() != 0) { setNumLayersGrown(other.getNumLayersGrown()); } if (other.getIsFinalized() != false) { setIsFinalized(other.getIsFinalized()); } if (postPrunedNodesMetaBuilder_ == null) { if (!other.postPrunedNodesMeta_.isEmpty()) { if (postPrunedNodesMeta_.isEmpty()) { postPrunedNodesMeta_ = other.postPrunedNodesMeta_; bitField0_ = (bitField0_ & ~0x00000004); } else { ensurePostPrunedNodesMetaIsMutable(); postPrunedNodesMeta_.addAll(other.postPrunedNodesMeta_); } onChanged(); } } else { if (!other.postPrunedNodesMeta_.isEmpty()) { if (postPrunedNodesMetaBuilder_.isEmpty()) { postPrunedNodesMetaBuilder_.dispose(); postPrunedNodesMetaBuilder_ = null; postPrunedNodesMeta_ = other.postPrunedNodesMeta_; bitField0_ = (bitField0_ & ~0x00000004); postPrunedNodesMetaBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getPostPrunedNodesMetaFieldBuilder() : null; } else { postPrunedNodesMetaBuilder_.addAllMessages(other.postPrunedNodesMeta_); } } } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { org.tensorflow.framework.TreeMetadata parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (org.tensorflow.framework.TreeMetadata) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int bitField0_; private int numLayersGrown_ ; /** *
     * Number of layers grown for this tree.
     * 
* * int32 num_layers_grown = 2; */ public int getNumLayersGrown() { return numLayersGrown_; } /** *
     * Number of layers grown for this tree.
     * 
* * int32 num_layers_grown = 2; */ public Builder setNumLayersGrown(int value) { numLayersGrown_ = value; onChanged(); return this; } /** *
     * Number of layers grown for this tree.
     * 
* * int32 num_layers_grown = 2; */ public Builder clearNumLayersGrown() { numLayersGrown_ = 0; onChanged(); return this; } private boolean isFinalized_ ; /** *
     * Whether the tree is finalized in that no more layers can be grown.
     * 
* * bool is_finalized = 3; */ public boolean getIsFinalized() { return isFinalized_; } /** *
     * Whether the tree is finalized in that no more layers can be grown.
     * 
* * bool is_finalized = 3; */ public Builder setIsFinalized(boolean value) { isFinalized_ = value; onChanged(); return this; } /** *
     * Whether the tree is finalized in that no more layers can be grown.
     * 
* * bool is_finalized = 3; */ public Builder clearIsFinalized() { isFinalized_ = false; onChanged(); return this; } private java.util.List postPrunedNodesMeta_ = java.util.Collections.emptyList(); private void ensurePostPrunedNodesMetaIsMutable() { if (!((bitField0_ & 0x00000004) == 0x00000004)) { postPrunedNodesMeta_ = new java.util.ArrayList(postPrunedNodesMeta_); bitField0_ |= 0x00000004; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.Builder, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdateOrBuilder> postPrunedNodesMetaBuilder_; /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public java.util.List getPostPrunedNodesMetaList() { if (postPrunedNodesMetaBuilder_ == null) { return java.util.Collections.unmodifiableList(postPrunedNodesMeta_); } else { return postPrunedNodesMetaBuilder_.getMessageList(); } } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public int getPostPrunedNodesMetaCount() { if (postPrunedNodesMetaBuilder_ == null) { return postPrunedNodesMeta_.size(); } else { return postPrunedNodesMetaBuilder_.getCount(); } } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate getPostPrunedNodesMeta(int index) { if (postPrunedNodesMetaBuilder_ == null) { return postPrunedNodesMeta_.get(index); } else { return postPrunedNodesMetaBuilder_.getMessage(index); } } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public Builder setPostPrunedNodesMeta( int index, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate value) { if (postPrunedNodesMetaBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePostPrunedNodesMetaIsMutable(); postPrunedNodesMeta_.set(index, value); onChanged(); } else { postPrunedNodesMetaBuilder_.setMessage(index, value); } return this; } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public Builder setPostPrunedNodesMeta( int index, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.Builder builderForValue) { if (postPrunedNodesMetaBuilder_ == null) { ensurePostPrunedNodesMetaIsMutable(); postPrunedNodesMeta_.set(index, builderForValue.build()); onChanged(); } else { postPrunedNodesMetaBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public Builder addPostPrunedNodesMeta(org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate value) { if (postPrunedNodesMetaBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePostPrunedNodesMetaIsMutable(); postPrunedNodesMeta_.add(value); onChanged(); } else { postPrunedNodesMetaBuilder_.addMessage(value); } return this; } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public Builder addPostPrunedNodesMeta( int index, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate value) { if (postPrunedNodesMetaBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePostPrunedNodesMetaIsMutable(); postPrunedNodesMeta_.add(index, value); onChanged(); } else { postPrunedNodesMetaBuilder_.addMessage(index, value); } return this; } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public Builder addPostPrunedNodesMeta( org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.Builder builderForValue) { if (postPrunedNodesMetaBuilder_ == null) { ensurePostPrunedNodesMetaIsMutable(); postPrunedNodesMeta_.add(builderForValue.build()); onChanged(); } else { postPrunedNodesMetaBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public Builder addPostPrunedNodesMeta( int index, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.Builder builderForValue) { if (postPrunedNodesMetaBuilder_ == null) { ensurePostPrunedNodesMetaIsMutable(); postPrunedNodesMeta_.add(index, builderForValue.build()); onChanged(); } else { postPrunedNodesMetaBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public Builder addAllPostPrunedNodesMeta( java.lang.Iterable values) { if (postPrunedNodesMetaBuilder_ == null) { ensurePostPrunedNodesMetaIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, postPrunedNodesMeta_); onChanged(); } else { postPrunedNodesMetaBuilder_.addAllMessages(values); } return this; } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public Builder clearPostPrunedNodesMeta() { if (postPrunedNodesMetaBuilder_ == null) { postPrunedNodesMeta_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); } else { postPrunedNodesMetaBuilder_.clear(); } return this; } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public Builder removePostPrunedNodesMeta(int index) { if (postPrunedNodesMetaBuilder_ == null) { ensurePostPrunedNodesMetaIsMutable(); postPrunedNodesMeta_.remove(index); onChanged(); } else { postPrunedNodesMetaBuilder_.remove(index); } return this; } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.Builder getPostPrunedNodesMetaBuilder( int index) { return getPostPrunedNodesMetaFieldBuilder().getBuilder(index); } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdateOrBuilder getPostPrunedNodesMetaOrBuilder( int index) { if (postPrunedNodesMetaBuilder_ == null) { return postPrunedNodesMeta_.get(index); } else { return postPrunedNodesMetaBuilder_.getMessageOrBuilder(index); } } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public java.util.List getPostPrunedNodesMetaOrBuilderList() { if (postPrunedNodesMetaBuilder_ != null) { return postPrunedNodesMetaBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(postPrunedNodesMeta_); } } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.Builder addPostPrunedNodesMetaBuilder() { return getPostPrunedNodesMetaFieldBuilder().addBuilder( org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.getDefaultInstance()); } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.Builder addPostPrunedNodesMetaBuilder( int index) { return getPostPrunedNodesMetaFieldBuilder().addBuilder( index, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.getDefaultInstance()); } /** *
     * If tree was finalized and post pruning happened, it is possible that cache
     * still refers to some nodes that were deleted or that the node ids changed
     * (e.g. node id 5 became node id 2 due to pruning of the other branch).
     * The mapping below allows us to understand where the old ids now map to and
     * how the values should be adjusted due to post-pruning.
     * The size of the list should be equal to the number of nodes in the tree
     * before post-pruning happened.
     * If the node was pruned, it will have new_node_id equal to the id of a node
     * that this node was collapsed into. For a node that didn't get pruned, it is
     * possible that its id still changed, so new_node_id will have the
     * corresponding id in the pruned tree.
     * If post-pruning didn't happen, or it did and it had no effect (e.g. no
     * nodes got pruned), this list will be empty.
     * 
* * repeated .tensorflow.boosted_trees.TreeMetadata.PostPruneNodeUpdate post_pruned_nodes_meta = 4; */ public java.util.List getPostPrunedNodesMetaBuilderList() { return getPostPrunedNodesMetaFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.Builder, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdateOrBuilder> getPostPrunedNodesMetaFieldBuilder() { if (postPrunedNodesMetaBuilder_ == null) { postPrunedNodesMetaBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdate.Builder, org.tensorflow.framework.TreeMetadata.PostPruneNodeUpdateOrBuilder>( postPrunedNodesMeta_, ((bitField0_ & 0x00000004) == 0x00000004), getParentForChildren(), isClean()); postPrunedNodesMeta_ = null; } return postPrunedNodesMetaBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.boosted_trees.TreeMetadata) } // @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.TreeMetadata) private static final org.tensorflow.framework.TreeMetadata DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new org.tensorflow.framework.TreeMetadata(); } public static org.tensorflow.framework.TreeMetadata getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TreeMetadata parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new TreeMetadata(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public org.tensorflow.framework.TreeMetadata getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy