All Downloads are FREE. Search and download functionalities are using the official Maven repository.

tensorflow.boosted_trees.learner.Learner Maven / Gradle / Ivy

// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow/contrib/boosted_trees/proto/learner.proto

package tensorflow.boosted_trees.learner;

public final class Learner {
  private Learner() {}
  public static void registerAllExtensions(
      com.google.protobuf.ExtensionRegistryLite registry) {
  }

  public static void registerAllExtensions(
      com.google.protobuf.ExtensionRegistry registry) {
    registerAllExtensions(
        (com.google.protobuf.ExtensionRegistryLite) registry);
  }
  public interface TreeRegularizationConfigOrBuilder extends
      // @@protoc_insertion_point(interface_extends:tensorflow.boosted_trees.learner.TreeRegularizationConfig)
      com.google.protobuf.MessageOrBuilder {

    /**
     * 
     * Classic L1/L2.
     * 
* * float l1 = 1; */ float getL1(); /** * float l2 = 2; */ float getL2(); /** *
     * Tree complexity penalizes overall model complexity effectively
     * limiting how deep the tree can grow in regions with small gain.
     * 
* * float tree_complexity = 3; */ float getTreeComplexity(); } /** *
   * Tree regularization config.
   * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.TreeRegularizationConfig} */ public static final class TreeRegularizationConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.boosted_trees.learner.TreeRegularizationConfig) TreeRegularizationConfigOrBuilder { private static final long serialVersionUID = 0L; // Use TreeRegularizationConfig.newBuilder() to construct. private TreeRegularizationConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private TreeRegularizationConfig() { l1_ = 0F; l2_ = 0F; treeComplexity_ = 0F; } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private TreeRegularizationConfig( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 13: { l1_ = input.readFloat(); break; } case 21: { l2_ = input.readFloat(); break; } case 29: { treeComplexity_ = input.readFloat(); break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_TreeRegularizationConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_TreeRegularizationConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.class, tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.Builder.class); } public static final int L1_FIELD_NUMBER = 1; private float l1_; /** *
     * Classic L1/L2.
     * 
* * float l1 = 1; */ public float getL1() { return l1_; } public static final int L2_FIELD_NUMBER = 2; private float l2_; /** * float l2 = 2; */ public float getL2() { return l2_; } public static final int TREE_COMPLEXITY_FIELD_NUMBER = 3; private float treeComplexity_; /** *
     * Tree complexity penalizes overall model complexity effectively
     * limiting how deep the tree can grow in regions with small gain.
     * 
* * float tree_complexity = 3; */ public float getTreeComplexity() { return treeComplexity_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (l1_ != 0F) { output.writeFloat(1, l1_); } if (l2_ != 0F) { output.writeFloat(2, l2_); } if (treeComplexity_ != 0F) { output.writeFloat(3, treeComplexity_); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (l1_ != 0F) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(1, l1_); } if (l2_ != 0F) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(2, l2_); } if (treeComplexity_ != 0F) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(3, treeComplexity_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig)) { return super.equals(obj); } tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig other = (tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig) obj; boolean result = true; result = result && ( java.lang.Float.floatToIntBits(getL1()) == java.lang.Float.floatToIntBits( other.getL1())); result = result && ( java.lang.Float.floatToIntBits(getL2()) == java.lang.Float.floatToIntBits( other.getL2())); result = result && ( java.lang.Float.floatToIntBits(getTreeComplexity()) == java.lang.Float.floatToIntBits( other.getTreeComplexity())); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + L1_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getL1()); hash = (37 * hash) + L2_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getL2()); hash = (37 * hash) + TREE_COMPLEXITY_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getTreeComplexity()); hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Tree regularization config.
     * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.TreeRegularizationConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.boosted_trees.learner.TreeRegularizationConfig) tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_TreeRegularizationConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_TreeRegularizationConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.class, tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.Builder.class); } // Construct using tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); l1_ = 0F; l2_ = 0F; treeComplexity_ = 0F; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_TreeRegularizationConfig_descriptor; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig getDefaultInstanceForType() { return tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.getDefaultInstance(); } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig build() { tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig buildPartial() { tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig result = new tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig(this); result.l1_ = l1_; result.l2_ = l2_; result.treeComplexity_ = treeComplexity_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig) { return mergeFrom((tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig other) { if (other == tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.getDefaultInstance()) return this; if (other.getL1() != 0F) { setL1(other.getL1()); } if (other.getL2() != 0F) { setL2(other.getL2()); } if (other.getTreeComplexity() != 0F) { setTreeComplexity(other.getTreeComplexity()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private float l1_ ; /** *
       * Classic L1/L2.
       * 
* * float l1 = 1; */ public float getL1() { return l1_; } /** *
       * Classic L1/L2.
       * 
* * float l1 = 1; */ public Builder setL1(float value) { l1_ = value; onChanged(); return this; } /** *
       * Classic L1/L2.
       * 
* * float l1 = 1; */ public Builder clearL1() { l1_ = 0F; onChanged(); return this; } private float l2_ ; /** * float l2 = 2; */ public float getL2() { return l2_; } /** * float l2 = 2; */ public Builder setL2(float value) { l2_ = value; onChanged(); return this; } /** * float l2 = 2; */ public Builder clearL2() { l2_ = 0F; onChanged(); return this; } private float treeComplexity_ ; /** *
       * Tree complexity penalizes overall model complexity effectively
       * limiting how deep the tree can grow in regions with small gain.
       * 
* * float tree_complexity = 3; */ public float getTreeComplexity() { return treeComplexity_; } /** *
       * Tree complexity penalizes overall model complexity effectively
       * limiting how deep the tree can grow in regions with small gain.
       * 
* * float tree_complexity = 3; */ public Builder setTreeComplexity(float value) { treeComplexity_ = value; onChanged(); return this; } /** *
       * Tree complexity penalizes overall model complexity effectively
       * limiting how deep the tree can grow in regions with small gain.
       * 
* * float tree_complexity = 3; */ public Builder clearTreeComplexity() { treeComplexity_ = 0F; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.boosted_trees.learner.TreeRegularizationConfig) } // @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.TreeRegularizationConfig) private static final tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig(); } public static tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TreeRegularizationConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new TreeRegularizationConfig(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface TreeConstraintsConfigOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.boosted_trees.learner.TreeConstraintsConfig) com.google.protobuf.MessageOrBuilder { /** *
     * Maximum depth of the trees. The default value is 6 if not specified.
     * 
* * uint32 max_tree_depth = 1; */ int getMaxTreeDepth(); /** *
     * Min hessian weight per node.
     * 
* * float min_node_weight = 2; */ float getMinNodeWeight(); /** *
     * Maximum number of unique features used in the tree. Zero means there is no
     * limit.
     * 
* * int64 max_number_of_unique_feature_columns = 3; */ long getMaxNumberOfUniqueFeatureColumns(); } /** *
   * Tree constraints config.
   * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.TreeConstraintsConfig} */ public static final class TreeConstraintsConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.boosted_trees.learner.TreeConstraintsConfig) TreeConstraintsConfigOrBuilder { private static final long serialVersionUID = 0L; // Use TreeConstraintsConfig.newBuilder() to construct. private TreeConstraintsConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private TreeConstraintsConfig() { maxTreeDepth_ = 0; minNodeWeight_ = 0F; maxNumberOfUniqueFeatureColumns_ = 0L; } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private TreeConstraintsConfig( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { maxTreeDepth_ = input.readUInt32(); break; } case 21: { minNodeWeight_ = input.readFloat(); break; } case 24: { maxNumberOfUniqueFeatureColumns_ = input.readInt64(); break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_TreeConstraintsConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_TreeConstraintsConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.class, tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.Builder.class); } public static final int MAX_TREE_DEPTH_FIELD_NUMBER = 1; private int maxTreeDepth_; /** *
     * Maximum depth of the trees. The default value is 6 if not specified.
     * 
* * uint32 max_tree_depth = 1; */ public int getMaxTreeDepth() { return maxTreeDepth_; } public static final int MIN_NODE_WEIGHT_FIELD_NUMBER = 2; private float minNodeWeight_; /** *
     * Min hessian weight per node.
     * 
* * float min_node_weight = 2; */ public float getMinNodeWeight() { return minNodeWeight_; } public static final int MAX_NUMBER_OF_UNIQUE_FEATURE_COLUMNS_FIELD_NUMBER = 3; private long maxNumberOfUniqueFeatureColumns_; /** *
     * Maximum number of unique features used in the tree. Zero means there is no
     * limit.
     * 
* * int64 max_number_of_unique_feature_columns = 3; */ public long getMaxNumberOfUniqueFeatureColumns() { return maxNumberOfUniqueFeatureColumns_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (maxTreeDepth_ != 0) { output.writeUInt32(1, maxTreeDepth_); } if (minNodeWeight_ != 0F) { output.writeFloat(2, minNodeWeight_); } if (maxNumberOfUniqueFeatureColumns_ != 0L) { output.writeInt64(3, maxNumberOfUniqueFeatureColumns_); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (maxTreeDepth_ != 0) { size += com.google.protobuf.CodedOutputStream .computeUInt32Size(1, maxTreeDepth_); } if (minNodeWeight_ != 0F) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(2, minNodeWeight_); } if (maxNumberOfUniqueFeatureColumns_ != 0L) { size += com.google.protobuf.CodedOutputStream .computeInt64Size(3, maxNumberOfUniqueFeatureColumns_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig)) { return super.equals(obj); } tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig other = (tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig) obj; boolean result = true; result = result && (getMaxTreeDepth() == other.getMaxTreeDepth()); result = result && ( java.lang.Float.floatToIntBits(getMinNodeWeight()) == java.lang.Float.floatToIntBits( other.getMinNodeWeight())); result = result && (getMaxNumberOfUniqueFeatureColumns() == other.getMaxNumberOfUniqueFeatureColumns()); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + MAX_TREE_DEPTH_FIELD_NUMBER; hash = (53 * hash) + getMaxTreeDepth(); hash = (37 * hash) + MIN_NODE_WEIGHT_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getMinNodeWeight()); hash = (37 * hash) + MAX_NUMBER_OF_UNIQUE_FEATURE_COLUMNS_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getMaxNumberOfUniqueFeatureColumns()); hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Tree constraints config.
     * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.TreeConstraintsConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.boosted_trees.learner.TreeConstraintsConfig) tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_TreeConstraintsConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_TreeConstraintsConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.class, tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.Builder.class); } // Construct using tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); maxTreeDepth_ = 0; minNodeWeight_ = 0F; maxNumberOfUniqueFeatureColumns_ = 0L; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_TreeConstraintsConfig_descriptor; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig getDefaultInstanceForType() { return tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.getDefaultInstance(); } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig build() { tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig buildPartial() { tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig result = new tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig(this); result.maxTreeDepth_ = maxTreeDepth_; result.minNodeWeight_ = minNodeWeight_; result.maxNumberOfUniqueFeatureColumns_ = maxNumberOfUniqueFeatureColumns_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig) { return mergeFrom((tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig other) { if (other == tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.getDefaultInstance()) return this; if (other.getMaxTreeDepth() != 0) { setMaxTreeDepth(other.getMaxTreeDepth()); } if (other.getMinNodeWeight() != 0F) { setMinNodeWeight(other.getMinNodeWeight()); } if (other.getMaxNumberOfUniqueFeatureColumns() != 0L) { setMaxNumberOfUniqueFeatureColumns(other.getMaxNumberOfUniqueFeatureColumns()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int maxTreeDepth_ ; /** *
       * Maximum depth of the trees. The default value is 6 if not specified.
       * 
* * uint32 max_tree_depth = 1; */ public int getMaxTreeDepth() { return maxTreeDepth_; } /** *
       * Maximum depth of the trees. The default value is 6 if not specified.
       * 
* * uint32 max_tree_depth = 1; */ public Builder setMaxTreeDepth(int value) { maxTreeDepth_ = value; onChanged(); return this; } /** *
       * Maximum depth of the trees. The default value is 6 if not specified.
       * 
* * uint32 max_tree_depth = 1; */ public Builder clearMaxTreeDepth() { maxTreeDepth_ = 0; onChanged(); return this; } private float minNodeWeight_ ; /** *
       * Min hessian weight per node.
       * 
* * float min_node_weight = 2; */ public float getMinNodeWeight() { return minNodeWeight_; } /** *
       * Min hessian weight per node.
       * 
* * float min_node_weight = 2; */ public Builder setMinNodeWeight(float value) { minNodeWeight_ = value; onChanged(); return this; } /** *
       * Min hessian weight per node.
       * 
* * float min_node_weight = 2; */ public Builder clearMinNodeWeight() { minNodeWeight_ = 0F; onChanged(); return this; } private long maxNumberOfUniqueFeatureColumns_ ; /** *
       * Maximum number of unique features used in the tree. Zero means there is no
       * limit.
       * 
* * int64 max_number_of_unique_feature_columns = 3; */ public long getMaxNumberOfUniqueFeatureColumns() { return maxNumberOfUniqueFeatureColumns_; } /** *
       * Maximum number of unique features used in the tree. Zero means there is no
       * limit.
       * 
* * int64 max_number_of_unique_feature_columns = 3; */ public Builder setMaxNumberOfUniqueFeatureColumns(long value) { maxNumberOfUniqueFeatureColumns_ = value; onChanged(); return this; } /** *
       * Maximum number of unique features used in the tree. Zero means there is no
       * limit.
       * 
* * int64 max_number_of_unique_feature_columns = 3; */ public Builder clearMaxNumberOfUniqueFeatureColumns() { maxNumberOfUniqueFeatureColumns_ = 0L; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.boosted_trees.learner.TreeConstraintsConfig) } // @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.TreeConstraintsConfig) private static final tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig(); } public static tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TreeConstraintsConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new TreeConstraintsConfig(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface LearningRateConfigOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.boosted_trees.learner.LearningRateConfig) com.google.protobuf.MessageOrBuilder { /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ boolean hasFixed(); /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig getFixed(); /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfigOrBuilder getFixedOrBuilder(); /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ boolean hasDropout(); /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig getDropout(); /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfigOrBuilder getDropoutOrBuilder(); /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ boolean hasLineSearch(); /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig getLineSearch(); /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfigOrBuilder getLineSearchOrBuilder(); public tensorflow.boosted_trees.learner.Learner.LearningRateConfig.TunerCase getTunerCase(); } /** *
   * LearningRateConfig describes all supported learning rate tuners.
   * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.LearningRateConfig} */ public static final class LearningRateConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.boosted_trees.learner.LearningRateConfig) LearningRateConfigOrBuilder { private static final long serialVersionUID = 0L; // Use LearningRateConfig.newBuilder() to construct. private LearningRateConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private LearningRateConfig() { } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private LearningRateConfig( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.Builder subBuilder = null; if (tunerCase_ == 1) { subBuilder = ((tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) tuner_).toBuilder(); } tuner_ = input.readMessage(tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom((tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) tuner_); tuner_ = subBuilder.buildPartial(); } tunerCase_ = 1; break; } case 18: { tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.Builder subBuilder = null; if (tunerCase_ == 2) { subBuilder = ((tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) tuner_).toBuilder(); } tuner_ = input.readMessage(tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom((tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) tuner_); tuner_ = subBuilder.buildPartial(); } tunerCase_ = 2; break; } case 26: { tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.Builder subBuilder = null; if (tunerCase_ == 3) { subBuilder = ((tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) tuner_).toBuilder(); } tuner_ = input.readMessage(tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom((tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) tuner_); tuner_ = subBuilder.buildPartial(); } tunerCase_ = 3; break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.LearningRateConfig.class, tensorflow.boosted_trees.learner.Learner.LearningRateConfig.Builder.class); } private int tunerCase_ = 0; private java.lang.Object tuner_; public enum TunerCase implements com.google.protobuf.Internal.EnumLite { FIXED(1), DROPOUT(2), LINE_SEARCH(3), TUNER_NOT_SET(0); private final int value; private TunerCase(int value) { this.value = value; } /** * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static TunerCase valueOf(int value) { return forNumber(value); } public static TunerCase forNumber(int value) { switch (value) { case 1: return FIXED; case 2: return DROPOUT; case 3: return LINE_SEARCH; case 0: return TUNER_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public TunerCase getTunerCase() { return TunerCase.forNumber( tunerCase_); } public static final int FIXED_FIELD_NUMBER = 1; /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ public boolean hasFixed() { return tunerCase_ == 1; } /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ public tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig getFixed() { if (tunerCase_ == 1) { return (tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.getDefaultInstance(); } /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ public tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfigOrBuilder getFixedOrBuilder() { if (tunerCase_ == 1) { return (tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.getDefaultInstance(); } public static final int DROPOUT_FIELD_NUMBER = 2; /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ public boolean hasDropout() { return tunerCase_ == 2; } /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ public tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig getDropout() { if (tunerCase_ == 2) { return (tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.getDefaultInstance(); } /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ public tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfigOrBuilder getDropoutOrBuilder() { if (tunerCase_ == 2) { return (tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.getDefaultInstance(); } public static final int LINE_SEARCH_FIELD_NUMBER = 3; /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ public boolean hasLineSearch() { return tunerCase_ == 3; } /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ public tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig getLineSearch() { if (tunerCase_ == 3) { return (tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.getDefaultInstance(); } /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ public tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfigOrBuilder getLineSearchOrBuilder() { if (tunerCase_ == 3) { return (tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.getDefaultInstance(); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (tunerCase_ == 1) { output.writeMessage(1, (tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) tuner_); } if (tunerCase_ == 2) { output.writeMessage(2, (tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) tuner_); } if (tunerCase_ == 3) { output.writeMessage(3, (tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) tuner_); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (tunerCase_ == 1) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, (tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) tuner_); } if (tunerCase_ == 2) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, (tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) tuner_); } if (tunerCase_ == 3) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(3, (tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) tuner_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof tensorflow.boosted_trees.learner.Learner.LearningRateConfig)) { return super.equals(obj); } tensorflow.boosted_trees.learner.Learner.LearningRateConfig other = (tensorflow.boosted_trees.learner.Learner.LearningRateConfig) obj; boolean result = true; result = result && getTunerCase().equals( other.getTunerCase()); if (!result) return false; switch (tunerCase_) { case 1: result = result && getFixed() .equals(other.getFixed()); break; case 2: result = result && getDropout() .equals(other.getDropout()); break; case 3: result = result && getLineSearch() .equals(other.getLineSearch()); break; case 0: default: } result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); switch (tunerCase_) { case 1: hash = (37 * hash) + FIXED_FIELD_NUMBER; hash = (53 * hash) + getFixed().hashCode(); break; case 2: hash = (37 * hash) + DROPOUT_FIELD_NUMBER; hash = (53 * hash) + getDropout().hashCode(); break; case 3: hash = (37 * hash) + LINE_SEARCH_FIELD_NUMBER; hash = (53 * hash) + getLineSearch().hashCode(); break; case 0: default: } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(tensorflow.boosted_trees.learner.Learner.LearningRateConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * LearningRateConfig describes all supported learning rate tuners.
     * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.LearningRateConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.boosted_trees.learner.LearningRateConfig) tensorflow.boosted_trees.learner.Learner.LearningRateConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.LearningRateConfig.class, tensorflow.boosted_trees.learner.Learner.LearningRateConfig.Builder.class); } // Construct using tensorflow.boosted_trees.learner.Learner.LearningRateConfig.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); tunerCase_ = 0; tuner_ = null; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateConfig_descriptor; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateConfig getDefaultInstanceForType() { return tensorflow.boosted_trees.learner.Learner.LearningRateConfig.getDefaultInstance(); } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateConfig build() { tensorflow.boosted_trees.learner.Learner.LearningRateConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateConfig buildPartial() { tensorflow.boosted_trees.learner.Learner.LearningRateConfig result = new tensorflow.boosted_trees.learner.Learner.LearningRateConfig(this); if (tunerCase_ == 1) { if (fixedBuilder_ == null) { result.tuner_ = tuner_; } else { result.tuner_ = fixedBuilder_.build(); } } if (tunerCase_ == 2) { if (dropoutBuilder_ == null) { result.tuner_ = tuner_; } else { result.tuner_ = dropoutBuilder_.build(); } } if (tunerCase_ == 3) { if (lineSearchBuilder_ == null) { result.tuner_ = tuner_; } else { result.tuner_ = lineSearchBuilder_.build(); } } result.tunerCase_ = tunerCase_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof tensorflow.boosted_trees.learner.Learner.LearningRateConfig) { return mergeFrom((tensorflow.boosted_trees.learner.Learner.LearningRateConfig)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(tensorflow.boosted_trees.learner.Learner.LearningRateConfig other) { if (other == tensorflow.boosted_trees.learner.Learner.LearningRateConfig.getDefaultInstance()) return this; switch (other.getTunerCase()) { case FIXED: { mergeFixed(other.getFixed()); break; } case DROPOUT: { mergeDropout(other.getDropout()); break; } case LINE_SEARCH: { mergeLineSearch(other.getLineSearch()); break; } case TUNER_NOT_SET: { break; } } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { tensorflow.boosted_trees.learner.Learner.LearningRateConfig parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (tensorflow.boosted_trees.learner.Learner.LearningRateConfig) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int tunerCase_ = 0; private java.lang.Object tuner_; public TunerCase getTunerCase() { return TunerCase.forNumber( tunerCase_); } public Builder clearTuner() { tunerCase_ = 0; tuner_ = null; onChanged(); return this; } private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig, tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfigOrBuilder> fixedBuilder_; /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ public boolean hasFixed() { return tunerCase_ == 1; } /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ public tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig getFixed() { if (fixedBuilder_ == null) { if (tunerCase_ == 1) { return (tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.getDefaultInstance(); } else { if (tunerCase_ == 1) { return fixedBuilder_.getMessage(); } return tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.getDefaultInstance(); } } /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ public Builder setFixed(tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig value) { if (fixedBuilder_ == null) { if (value == null) { throw new NullPointerException(); } tuner_ = value; onChanged(); } else { fixedBuilder_.setMessage(value); } tunerCase_ = 1; return this; } /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ public Builder setFixed( tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.Builder builderForValue) { if (fixedBuilder_ == null) { tuner_ = builderForValue.build(); onChanged(); } else { fixedBuilder_.setMessage(builderForValue.build()); } tunerCase_ = 1; return this; } /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ public Builder mergeFixed(tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig value) { if (fixedBuilder_ == null) { if (tunerCase_ == 1 && tuner_ != tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.getDefaultInstance()) { tuner_ = tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.newBuilder((tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) tuner_) .mergeFrom(value).buildPartial(); } else { tuner_ = value; } onChanged(); } else { if (tunerCase_ == 1) { fixedBuilder_.mergeFrom(value); } fixedBuilder_.setMessage(value); } tunerCase_ = 1; return this; } /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ public Builder clearFixed() { if (fixedBuilder_ == null) { if (tunerCase_ == 1) { tunerCase_ = 0; tuner_ = null; onChanged(); } } else { if (tunerCase_ == 1) { tunerCase_ = 0; tuner_ = null; } fixedBuilder_.clear(); } return this; } /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ public tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.Builder getFixedBuilder() { return getFixedFieldBuilder().getBuilder(); } /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ public tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfigOrBuilder getFixedOrBuilder() { if ((tunerCase_ == 1) && (fixedBuilder_ != null)) { return fixedBuilder_.getMessageOrBuilder(); } else { if (tunerCase_ == 1) { return (tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.getDefaultInstance(); } } /** * .tensorflow.boosted_trees.learner.LearningRateFixedConfig fixed = 1; */ private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig, tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfigOrBuilder> getFixedFieldBuilder() { if (fixedBuilder_ == null) { if (!(tunerCase_ == 1)) { tuner_ = tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.getDefaultInstance(); } fixedBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig, tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfigOrBuilder>( (tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) tuner_, getParentForChildren(), isClean()); tuner_ = null; } tunerCase_ = 1; onChanged();; return fixedBuilder_; } private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig, tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfigOrBuilder> dropoutBuilder_; /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ public boolean hasDropout() { return tunerCase_ == 2; } /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ public tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig getDropout() { if (dropoutBuilder_ == null) { if (tunerCase_ == 2) { return (tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.getDefaultInstance(); } else { if (tunerCase_ == 2) { return dropoutBuilder_.getMessage(); } return tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.getDefaultInstance(); } } /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ public Builder setDropout(tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig value) { if (dropoutBuilder_ == null) { if (value == null) { throw new NullPointerException(); } tuner_ = value; onChanged(); } else { dropoutBuilder_.setMessage(value); } tunerCase_ = 2; return this; } /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ public Builder setDropout( tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.Builder builderForValue) { if (dropoutBuilder_ == null) { tuner_ = builderForValue.build(); onChanged(); } else { dropoutBuilder_.setMessage(builderForValue.build()); } tunerCase_ = 2; return this; } /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ public Builder mergeDropout(tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig value) { if (dropoutBuilder_ == null) { if (tunerCase_ == 2 && tuner_ != tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.getDefaultInstance()) { tuner_ = tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.newBuilder((tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) tuner_) .mergeFrom(value).buildPartial(); } else { tuner_ = value; } onChanged(); } else { if (tunerCase_ == 2) { dropoutBuilder_.mergeFrom(value); } dropoutBuilder_.setMessage(value); } tunerCase_ = 2; return this; } /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ public Builder clearDropout() { if (dropoutBuilder_ == null) { if (tunerCase_ == 2) { tunerCase_ = 0; tuner_ = null; onChanged(); } } else { if (tunerCase_ == 2) { tunerCase_ = 0; tuner_ = null; } dropoutBuilder_.clear(); } return this; } /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ public tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.Builder getDropoutBuilder() { return getDropoutFieldBuilder().getBuilder(); } /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ public tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfigOrBuilder getDropoutOrBuilder() { if ((tunerCase_ == 2) && (dropoutBuilder_ != null)) { return dropoutBuilder_.getMessageOrBuilder(); } else { if (tunerCase_ == 2) { return (tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.getDefaultInstance(); } } /** * .tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig dropout = 2; */ private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig, tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfigOrBuilder> getDropoutFieldBuilder() { if (dropoutBuilder_ == null) { if (!(tunerCase_ == 2)) { tuner_ = tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.getDefaultInstance(); } dropoutBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig, tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfigOrBuilder>( (tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) tuner_, getParentForChildren(), isClean()); tuner_ = null; } tunerCase_ = 2; onChanged();; return dropoutBuilder_; } private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig, tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfigOrBuilder> lineSearchBuilder_; /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ public boolean hasLineSearch() { return tunerCase_ == 3; } /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ public tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig getLineSearch() { if (lineSearchBuilder_ == null) { if (tunerCase_ == 3) { return (tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.getDefaultInstance(); } else { if (tunerCase_ == 3) { return lineSearchBuilder_.getMessage(); } return tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.getDefaultInstance(); } } /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ public Builder setLineSearch(tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig value) { if (lineSearchBuilder_ == null) { if (value == null) { throw new NullPointerException(); } tuner_ = value; onChanged(); } else { lineSearchBuilder_.setMessage(value); } tunerCase_ = 3; return this; } /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ public Builder setLineSearch( tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.Builder builderForValue) { if (lineSearchBuilder_ == null) { tuner_ = builderForValue.build(); onChanged(); } else { lineSearchBuilder_.setMessage(builderForValue.build()); } tunerCase_ = 3; return this; } /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ public Builder mergeLineSearch(tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig value) { if (lineSearchBuilder_ == null) { if (tunerCase_ == 3 && tuner_ != tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.getDefaultInstance()) { tuner_ = tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.newBuilder((tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) tuner_) .mergeFrom(value).buildPartial(); } else { tuner_ = value; } onChanged(); } else { if (tunerCase_ == 3) { lineSearchBuilder_.mergeFrom(value); } lineSearchBuilder_.setMessage(value); } tunerCase_ = 3; return this; } /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ public Builder clearLineSearch() { if (lineSearchBuilder_ == null) { if (tunerCase_ == 3) { tunerCase_ = 0; tuner_ = null; onChanged(); } } else { if (tunerCase_ == 3) { tunerCase_ = 0; tuner_ = null; } lineSearchBuilder_.clear(); } return this; } /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ public tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.Builder getLineSearchBuilder() { return getLineSearchFieldBuilder().getBuilder(); } /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ public tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfigOrBuilder getLineSearchOrBuilder() { if ((tunerCase_ == 3) && (lineSearchBuilder_ != null)) { return lineSearchBuilder_.getMessageOrBuilder(); } else { if (tunerCase_ == 3) { return (tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) tuner_; } return tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.getDefaultInstance(); } } /** * .tensorflow.boosted_trees.learner.LearningRateLineSearchConfig line_search = 3; */ private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig, tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfigOrBuilder> getLineSearchFieldBuilder() { if (lineSearchBuilder_ == null) { if (!(tunerCase_ == 3)) { tuner_ = tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.getDefaultInstance(); } lineSearchBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig, tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfigOrBuilder>( (tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) tuner_, getParentForChildren(), isClean()); tuner_ = null; } tunerCase_ = 3; onChanged();; return lineSearchBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.boosted_trees.learner.LearningRateConfig) } // @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.LearningRateConfig) private static final tensorflow.boosted_trees.learner.Learner.LearningRateConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new tensorflow.boosted_trees.learner.Learner.LearningRateConfig(); } public static tensorflow.boosted_trees.learner.Learner.LearningRateConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public LearningRateConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new LearningRateConfig(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface LearningRateFixedConfigOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.boosted_trees.learner.LearningRateFixedConfig) com.google.protobuf.MessageOrBuilder { /** * float learning_rate = 1; */ float getLearningRate(); } /** *
   * Config for a fixed learning rate.
   * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.LearningRateFixedConfig} */ public static final class LearningRateFixedConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.boosted_trees.learner.LearningRateFixedConfig) LearningRateFixedConfigOrBuilder { private static final long serialVersionUID = 0L; // Use LearningRateFixedConfig.newBuilder() to construct. private LearningRateFixedConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private LearningRateFixedConfig() { learningRate_ = 0F; } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private LearningRateFixedConfig( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 13: { learningRate_ = input.readFloat(); break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateFixedConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateFixedConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.class, tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.Builder.class); } public static final int LEARNING_RATE_FIELD_NUMBER = 1; private float learningRate_; /** * float learning_rate = 1; */ public float getLearningRate() { return learningRate_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (learningRate_ != 0F) { output.writeFloat(1, learningRate_); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (learningRate_ != 0F) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(1, learningRate_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig)) { return super.equals(obj); } tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig other = (tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) obj; boolean result = true; result = result && ( java.lang.Float.floatToIntBits(getLearningRate()) == java.lang.Float.floatToIntBits( other.getLearningRate())); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + LEARNING_RATE_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getLearningRate()); hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Config for a fixed learning rate.
     * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.LearningRateFixedConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.boosted_trees.learner.LearningRateFixedConfig) tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateFixedConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateFixedConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.class, tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.Builder.class); } // Construct using tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); learningRate_ = 0F; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateFixedConfig_descriptor; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig getDefaultInstanceForType() { return tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.getDefaultInstance(); } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig build() { tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig buildPartial() { tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig result = new tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig(this); result.learningRate_ = learningRate_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) { return mergeFrom((tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig other) { if (other == tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig.getDefaultInstance()) return this; if (other.getLearningRate() != 0F) { setLearningRate(other.getLearningRate()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private float learningRate_ ; /** * float learning_rate = 1; */ public float getLearningRate() { return learningRate_; } /** * float learning_rate = 1; */ public Builder setLearningRate(float value) { learningRate_ = value; onChanged(); return this; } /** * float learning_rate = 1; */ public Builder clearLearningRate() { learningRate_ = 0F; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.boosted_trees.learner.LearningRateFixedConfig) } // @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.LearningRateFixedConfig) private static final tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig(); } public static tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public LearningRateFixedConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new LearningRateFixedConfig(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateFixedConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface LearningRateLineSearchConfigOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.boosted_trees.learner.LearningRateLineSearchConfig) com.google.protobuf.MessageOrBuilder { /** *
     * Max learning rate. Must be strictly positive.
     * 
* * float max_learning_rate = 1; */ float getMaxLearningRate(); /** *
     * Number of learning rate values to consider between [0, max_learning_rate).
     * 
* * int32 num_steps = 2; */ int getNumSteps(); } /** *
   * Config for a tuned learning rate.
   * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.LearningRateLineSearchConfig} */ public static final class LearningRateLineSearchConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.boosted_trees.learner.LearningRateLineSearchConfig) LearningRateLineSearchConfigOrBuilder { private static final long serialVersionUID = 0L; // Use LearningRateLineSearchConfig.newBuilder() to construct. private LearningRateLineSearchConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private LearningRateLineSearchConfig() { maxLearningRate_ = 0F; numSteps_ = 0; } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private LearningRateLineSearchConfig( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 13: { maxLearningRate_ = input.readFloat(); break; } case 16: { numSteps_ = input.readInt32(); break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateLineSearchConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateLineSearchConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.class, tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.Builder.class); } public static final int MAX_LEARNING_RATE_FIELD_NUMBER = 1; private float maxLearningRate_; /** *
     * Max learning rate. Must be strictly positive.
     * 
* * float max_learning_rate = 1; */ public float getMaxLearningRate() { return maxLearningRate_; } public static final int NUM_STEPS_FIELD_NUMBER = 2; private int numSteps_; /** *
     * Number of learning rate values to consider between [0, max_learning_rate).
     * 
* * int32 num_steps = 2; */ public int getNumSteps() { return numSteps_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (maxLearningRate_ != 0F) { output.writeFloat(1, maxLearningRate_); } if (numSteps_ != 0) { output.writeInt32(2, numSteps_); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (maxLearningRate_ != 0F) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(1, maxLearningRate_); } if (numSteps_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(2, numSteps_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig)) { return super.equals(obj); } tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig other = (tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) obj; boolean result = true; result = result && ( java.lang.Float.floatToIntBits(getMaxLearningRate()) == java.lang.Float.floatToIntBits( other.getMaxLearningRate())); result = result && (getNumSteps() == other.getNumSteps()); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + MAX_LEARNING_RATE_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getMaxLearningRate()); hash = (37 * hash) + NUM_STEPS_FIELD_NUMBER; hash = (53 * hash) + getNumSteps(); hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Config for a tuned learning rate.
     * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.LearningRateLineSearchConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.boosted_trees.learner.LearningRateLineSearchConfig) tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateLineSearchConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateLineSearchConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.class, tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.Builder.class); } // Construct using tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); maxLearningRate_ = 0F; numSteps_ = 0; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateLineSearchConfig_descriptor; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig getDefaultInstanceForType() { return tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.getDefaultInstance(); } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig build() { tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig buildPartial() { tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig result = new tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig(this); result.maxLearningRate_ = maxLearningRate_; result.numSteps_ = numSteps_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) { return mergeFrom((tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig other) { if (other == tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig.getDefaultInstance()) return this; if (other.getMaxLearningRate() != 0F) { setMaxLearningRate(other.getMaxLearningRate()); } if (other.getNumSteps() != 0) { setNumSteps(other.getNumSteps()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private float maxLearningRate_ ; /** *
       * Max learning rate. Must be strictly positive.
       * 
* * float max_learning_rate = 1; */ public float getMaxLearningRate() { return maxLearningRate_; } /** *
       * Max learning rate. Must be strictly positive.
       * 
* * float max_learning_rate = 1; */ public Builder setMaxLearningRate(float value) { maxLearningRate_ = value; onChanged(); return this; } /** *
       * Max learning rate. Must be strictly positive.
       * 
* * float max_learning_rate = 1; */ public Builder clearMaxLearningRate() { maxLearningRate_ = 0F; onChanged(); return this; } private int numSteps_ ; /** *
       * Number of learning rate values to consider between [0, max_learning_rate).
       * 
* * int32 num_steps = 2; */ public int getNumSteps() { return numSteps_; } /** *
       * Number of learning rate values to consider between [0, max_learning_rate).
       * 
* * int32 num_steps = 2; */ public Builder setNumSteps(int value) { numSteps_ = value; onChanged(); return this; } /** *
       * Number of learning rate values to consider between [0, max_learning_rate).
       * 
* * int32 num_steps = 2; */ public Builder clearNumSteps() { numSteps_ = 0; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.boosted_trees.learner.LearningRateLineSearchConfig) } // @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.LearningRateLineSearchConfig) private static final tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig(); } public static tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public LearningRateLineSearchConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new LearningRateLineSearchConfig(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateLineSearchConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface AveragingConfigOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.boosted_trees.learner.AveragingConfig) com.google.protobuf.MessageOrBuilder { /** * float average_last_n_trees = 1; */ float getAverageLastNTrees(); /** *
     * Between 0 and 1. If set to 1.0, we are averaging ensembles of tree 1,
     * ensemble of tree 1 and tree 2, etc ensemble of all trees. If set to 0.5,
     * last half of the trees are averaged etc.
     * 
* * float average_last_percent_trees = 2; */ float getAverageLastPercentTrees(); public tensorflow.boosted_trees.learner.Learner.AveragingConfig.ConfigCase getConfigCase(); } /** *
   * When we have a sequence of trees 1, 2, 3 ... n, these essentially represent
   * weights updates in functional space, and thus we can use averaging of weight
   * updates to achieve better performance. For example, we can say that our final
   * ensemble will be an average of ensembles of tree 1, and ensemble of tree 1
   * and tree 2 etc .. ensemble of all trees.
   * Note that this averaging will apply ONLY DURING PREDICTION. The training
   * stays the same.
   * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.AveragingConfig} */ public static final class AveragingConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.boosted_trees.learner.AveragingConfig) AveragingConfigOrBuilder { private static final long serialVersionUID = 0L; // Use AveragingConfig.newBuilder() to construct. private AveragingConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private AveragingConfig() { } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private AveragingConfig( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 13: { configCase_ = 1; config_ = input.readFloat(); break; } case 21: { configCase_ = 2; config_ = input.readFloat(); break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_AveragingConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_AveragingConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.AveragingConfig.class, tensorflow.boosted_trees.learner.Learner.AveragingConfig.Builder.class); } private int configCase_ = 0; private java.lang.Object config_; public enum ConfigCase implements com.google.protobuf.Internal.EnumLite { AVERAGE_LAST_N_TREES(1), AVERAGE_LAST_PERCENT_TREES(2), CONFIG_NOT_SET(0); private final int value; private ConfigCase(int value) { this.value = value; } /** * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static ConfigCase valueOf(int value) { return forNumber(value); } public static ConfigCase forNumber(int value) { switch (value) { case 1: return AVERAGE_LAST_N_TREES; case 2: return AVERAGE_LAST_PERCENT_TREES; case 0: return CONFIG_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public ConfigCase getConfigCase() { return ConfigCase.forNumber( configCase_); } public static final int AVERAGE_LAST_N_TREES_FIELD_NUMBER = 1; /** * float average_last_n_trees = 1; */ public float getAverageLastNTrees() { if (configCase_ == 1) { return (java.lang.Float) config_; } return 0F; } public static final int AVERAGE_LAST_PERCENT_TREES_FIELD_NUMBER = 2; /** *
     * Between 0 and 1. If set to 1.0, we are averaging ensembles of tree 1,
     * ensemble of tree 1 and tree 2, etc ensemble of all trees. If set to 0.5,
     * last half of the trees are averaged etc.
     * 
* * float average_last_percent_trees = 2; */ public float getAverageLastPercentTrees() { if (configCase_ == 2) { return (java.lang.Float) config_; } return 0F; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (configCase_ == 1) { output.writeFloat( 1, (float)((java.lang.Float) config_)); } if (configCase_ == 2) { output.writeFloat( 2, (float)((java.lang.Float) config_)); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (configCase_ == 1) { size += com.google.protobuf.CodedOutputStream .computeFloatSize( 1, (float)((java.lang.Float) config_)); } if (configCase_ == 2) { size += com.google.protobuf.CodedOutputStream .computeFloatSize( 2, (float)((java.lang.Float) config_)); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof tensorflow.boosted_trees.learner.Learner.AveragingConfig)) { return super.equals(obj); } tensorflow.boosted_trees.learner.Learner.AveragingConfig other = (tensorflow.boosted_trees.learner.Learner.AveragingConfig) obj; boolean result = true; result = result && getConfigCase().equals( other.getConfigCase()); if (!result) return false; switch (configCase_) { case 1: result = result && ( java.lang.Float.floatToIntBits(getAverageLastNTrees()) == java.lang.Float.floatToIntBits( other.getAverageLastNTrees())); break; case 2: result = result && ( java.lang.Float.floatToIntBits(getAverageLastPercentTrees()) == java.lang.Float.floatToIntBits( other.getAverageLastPercentTrees())); break; case 0: default: } result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); switch (configCase_) { case 1: hash = (37 * hash) + AVERAGE_LAST_N_TREES_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getAverageLastNTrees()); break; case 2: hash = (37 * hash) + AVERAGE_LAST_PERCENT_TREES_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getAverageLastPercentTrees()); break; case 0: default: } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(tensorflow.boosted_trees.learner.Learner.AveragingConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * When we have a sequence of trees 1, 2, 3 ... n, these essentially represent
     * weights updates in functional space, and thus we can use averaging of weight
     * updates to achieve better performance. For example, we can say that our final
     * ensemble will be an average of ensembles of tree 1, and ensemble of tree 1
     * and tree 2 etc .. ensemble of all trees.
     * Note that this averaging will apply ONLY DURING PREDICTION. The training
     * stays the same.
     * 
* * Protobuf type {@code tensorflow.boosted_trees.learner.AveragingConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.boosted_trees.learner.AveragingConfig) tensorflow.boosted_trees.learner.Learner.AveragingConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_AveragingConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_AveragingConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.AveragingConfig.class, tensorflow.boosted_trees.learner.Learner.AveragingConfig.Builder.class); } // Construct using tensorflow.boosted_trees.learner.Learner.AveragingConfig.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); configCase_ = 0; config_ = null; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_AveragingConfig_descriptor; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.AveragingConfig getDefaultInstanceForType() { return tensorflow.boosted_trees.learner.Learner.AveragingConfig.getDefaultInstance(); } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.AveragingConfig build() { tensorflow.boosted_trees.learner.Learner.AveragingConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.AveragingConfig buildPartial() { tensorflow.boosted_trees.learner.Learner.AveragingConfig result = new tensorflow.boosted_trees.learner.Learner.AveragingConfig(this); if (configCase_ == 1) { result.config_ = config_; } if (configCase_ == 2) { result.config_ = config_; } result.configCase_ = configCase_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof tensorflow.boosted_trees.learner.Learner.AveragingConfig) { return mergeFrom((tensorflow.boosted_trees.learner.Learner.AveragingConfig)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(tensorflow.boosted_trees.learner.Learner.AveragingConfig other) { if (other == tensorflow.boosted_trees.learner.Learner.AveragingConfig.getDefaultInstance()) return this; switch (other.getConfigCase()) { case AVERAGE_LAST_N_TREES: { setAverageLastNTrees(other.getAverageLastNTrees()); break; } case AVERAGE_LAST_PERCENT_TREES: { setAverageLastPercentTrees(other.getAverageLastPercentTrees()); break; } case CONFIG_NOT_SET: { break; } } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { tensorflow.boosted_trees.learner.Learner.AveragingConfig parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (tensorflow.boosted_trees.learner.Learner.AveragingConfig) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int configCase_ = 0; private java.lang.Object config_; public ConfigCase getConfigCase() { return ConfigCase.forNumber( configCase_); } public Builder clearConfig() { configCase_ = 0; config_ = null; onChanged(); return this; } /** * float average_last_n_trees = 1; */ public float getAverageLastNTrees() { if (configCase_ == 1) { return (java.lang.Float) config_; } return 0F; } /** * float average_last_n_trees = 1; */ public Builder setAverageLastNTrees(float value) { configCase_ = 1; config_ = value; onChanged(); return this; } /** * float average_last_n_trees = 1; */ public Builder clearAverageLastNTrees() { if (configCase_ == 1) { configCase_ = 0; config_ = null; onChanged(); } return this; } /** *
       * Between 0 and 1. If set to 1.0, we are averaging ensembles of tree 1,
       * ensemble of tree 1 and tree 2, etc ensemble of all trees. If set to 0.5,
       * last half of the trees are averaged etc.
       * 
* * float average_last_percent_trees = 2; */ public float getAverageLastPercentTrees() { if (configCase_ == 2) { return (java.lang.Float) config_; } return 0F; } /** *
       * Between 0 and 1. If set to 1.0, we are averaging ensembles of tree 1,
       * ensemble of tree 1 and tree 2, etc ensemble of all trees. If set to 0.5,
       * last half of the trees are averaged etc.
       * 
* * float average_last_percent_trees = 2; */ public Builder setAverageLastPercentTrees(float value) { configCase_ = 2; config_ = value; onChanged(); return this; } /** *
       * Between 0 and 1. If set to 1.0, we are averaging ensembles of tree 1,
       * ensemble of tree 1 and tree 2, etc ensemble of all trees. If set to 0.5,
       * last half of the trees are averaged etc.
       * 
* * float average_last_percent_trees = 2; */ public Builder clearAverageLastPercentTrees() { if (configCase_ == 2) { configCase_ = 0; config_ = null; onChanged(); } return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.boosted_trees.learner.AveragingConfig) } // @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.AveragingConfig) private static final tensorflow.boosted_trees.learner.Learner.AveragingConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new tensorflow.boosted_trees.learner.Learner.AveragingConfig(); } public static tensorflow.boosted_trees.learner.Learner.AveragingConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public AveragingConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new AveragingConfig(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.AveragingConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface LearningRateDropoutDrivenConfigOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig) com.google.protobuf.MessageOrBuilder { /** *
     * Probability of dropping each tree in an existing so far ensemble.
     * 
* * float dropout_probability = 1; */ float getDropoutProbability(); /** *
     * When trees are built after dropout happen, they don't "advance" to the
     * optimal solution, they just rearrange the path. However you can still
     * choose to skip dropout periodically, to allow a new tree that "advances"
     * to be added.
     * For example, if running for 200 steps with probability of dropout 1/100,
     * you would expect the dropout to start happening for sure for all iterations
     * after 100. However you can add probability_of_skipping_dropout of 0.1, this
     * way iterations 100-200 will include approx 90 iterations of dropout and 10
     * iterations of normal steps.Set it to 0 if you want just keep building
     * the refinement trees after dropout kicks in.
     * 
* * float probability_of_skipping_dropout = 2; */ float getProbabilityOfSkippingDropout(); /** *
     * Between 0 and 1.
     * 
* * float learning_rate = 3; */ float getLearningRate(); } /** * Protobuf type {@code tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig} */ public static final class LearningRateDropoutDrivenConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig) LearningRateDropoutDrivenConfigOrBuilder { private static final long serialVersionUID = 0L; // Use LearningRateDropoutDrivenConfig.newBuilder() to construct. private LearningRateDropoutDrivenConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private LearningRateDropoutDrivenConfig() { dropoutProbability_ = 0F; probabilityOfSkippingDropout_ = 0F; learningRate_ = 0F; } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private LearningRateDropoutDrivenConfig( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 13: { dropoutProbability_ = input.readFloat(); break; } case 21: { probabilityOfSkippingDropout_ = input.readFloat(); break; } case 29: { learningRate_ = input.readFloat(); break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateDropoutDrivenConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateDropoutDrivenConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.class, tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.Builder.class); } public static final int DROPOUT_PROBABILITY_FIELD_NUMBER = 1; private float dropoutProbability_; /** *
     * Probability of dropping each tree in an existing so far ensemble.
     * 
* * float dropout_probability = 1; */ public float getDropoutProbability() { return dropoutProbability_; } public static final int PROBABILITY_OF_SKIPPING_DROPOUT_FIELD_NUMBER = 2; private float probabilityOfSkippingDropout_; /** *
     * When trees are built after dropout happen, they don't "advance" to the
     * optimal solution, they just rearrange the path. However you can still
     * choose to skip dropout periodically, to allow a new tree that "advances"
     * to be added.
     * For example, if running for 200 steps with probability of dropout 1/100,
     * you would expect the dropout to start happening for sure for all iterations
     * after 100. However you can add probability_of_skipping_dropout of 0.1, this
     * way iterations 100-200 will include approx 90 iterations of dropout and 10
     * iterations of normal steps.Set it to 0 if you want just keep building
     * the refinement trees after dropout kicks in.
     * 
* * float probability_of_skipping_dropout = 2; */ public float getProbabilityOfSkippingDropout() { return probabilityOfSkippingDropout_; } public static final int LEARNING_RATE_FIELD_NUMBER = 3; private float learningRate_; /** *
     * Between 0 and 1.
     * 
* * float learning_rate = 3; */ public float getLearningRate() { return learningRate_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (dropoutProbability_ != 0F) { output.writeFloat(1, dropoutProbability_); } if (probabilityOfSkippingDropout_ != 0F) { output.writeFloat(2, probabilityOfSkippingDropout_); } if (learningRate_ != 0F) { output.writeFloat(3, learningRate_); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (dropoutProbability_ != 0F) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(1, dropoutProbability_); } if (probabilityOfSkippingDropout_ != 0F) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(2, probabilityOfSkippingDropout_); } if (learningRate_ != 0F) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(3, learningRate_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig)) { return super.equals(obj); } tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig other = (tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) obj; boolean result = true; result = result && ( java.lang.Float.floatToIntBits(getDropoutProbability()) == java.lang.Float.floatToIntBits( other.getDropoutProbability())); result = result && ( java.lang.Float.floatToIntBits(getProbabilityOfSkippingDropout()) == java.lang.Float.floatToIntBits( other.getProbabilityOfSkippingDropout())); result = result && ( java.lang.Float.floatToIntBits(getLearningRate()) == java.lang.Float.floatToIntBits( other.getLearningRate())); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + DROPOUT_PROBABILITY_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getDropoutProbability()); hash = (37 * hash) + PROBABILITY_OF_SKIPPING_DROPOUT_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getProbabilityOfSkippingDropout()); hash = (37 * hash) + LEARNING_RATE_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getLearningRate()); hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig) tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateDropoutDrivenConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateDropoutDrivenConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.class, tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.Builder.class); } // Construct using tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); dropoutProbability_ = 0F; probabilityOfSkippingDropout_ = 0F; learningRate_ = 0F; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearningRateDropoutDrivenConfig_descriptor; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig getDefaultInstanceForType() { return tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.getDefaultInstance(); } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig build() { tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig buildPartial() { tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig result = new tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig(this); result.dropoutProbability_ = dropoutProbability_; result.probabilityOfSkippingDropout_ = probabilityOfSkippingDropout_; result.learningRate_ = learningRate_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) { return mergeFrom((tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig other) { if (other == tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig.getDefaultInstance()) return this; if (other.getDropoutProbability() != 0F) { setDropoutProbability(other.getDropoutProbability()); } if (other.getProbabilityOfSkippingDropout() != 0F) { setProbabilityOfSkippingDropout(other.getProbabilityOfSkippingDropout()); } if (other.getLearningRate() != 0F) { setLearningRate(other.getLearningRate()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private float dropoutProbability_ ; /** *
       * Probability of dropping each tree in an existing so far ensemble.
       * 
* * float dropout_probability = 1; */ public float getDropoutProbability() { return dropoutProbability_; } /** *
       * Probability of dropping each tree in an existing so far ensemble.
       * 
* * float dropout_probability = 1; */ public Builder setDropoutProbability(float value) { dropoutProbability_ = value; onChanged(); return this; } /** *
       * Probability of dropping each tree in an existing so far ensemble.
       * 
* * float dropout_probability = 1; */ public Builder clearDropoutProbability() { dropoutProbability_ = 0F; onChanged(); return this; } private float probabilityOfSkippingDropout_ ; /** *
       * When trees are built after dropout happen, they don't "advance" to the
       * optimal solution, they just rearrange the path. However you can still
       * choose to skip dropout periodically, to allow a new tree that "advances"
       * to be added.
       * For example, if running for 200 steps with probability of dropout 1/100,
       * you would expect the dropout to start happening for sure for all iterations
       * after 100. However you can add probability_of_skipping_dropout of 0.1, this
       * way iterations 100-200 will include approx 90 iterations of dropout and 10
       * iterations of normal steps.Set it to 0 if you want just keep building
       * the refinement trees after dropout kicks in.
       * 
* * float probability_of_skipping_dropout = 2; */ public float getProbabilityOfSkippingDropout() { return probabilityOfSkippingDropout_; } /** *
       * When trees are built after dropout happen, they don't "advance" to the
       * optimal solution, they just rearrange the path. However you can still
       * choose to skip dropout periodically, to allow a new tree that "advances"
       * to be added.
       * For example, if running for 200 steps with probability of dropout 1/100,
       * you would expect the dropout to start happening for sure for all iterations
       * after 100. However you can add probability_of_skipping_dropout of 0.1, this
       * way iterations 100-200 will include approx 90 iterations of dropout and 10
       * iterations of normal steps.Set it to 0 if you want just keep building
       * the refinement trees after dropout kicks in.
       * 
* * float probability_of_skipping_dropout = 2; */ public Builder setProbabilityOfSkippingDropout(float value) { probabilityOfSkippingDropout_ = value; onChanged(); return this; } /** *
       * When trees are built after dropout happen, they don't "advance" to the
       * optimal solution, they just rearrange the path. However you can still
       * choose to skip dropout periodically, to allow a new tree that "advances"
       * to be added.
       * For example, if running for 200 steps with probability of dropout 1/100,
       * you would expect the dropout to start happening for sure for all iterations
       * after 100. However you can add probability_of_skipping_dropout of 0.1, this
       * way iterations 100-200 will include approx 90 iterations of dropout and 10
       * iterations of normal steps.Set it to 0 if you want just keep building
       * the refinement trees after dropout kicks in.
       * 
* * float probability_of_skipping_dropout = 2; */ public Builder clearProbabilityOfSkippingDropout() { probabilityOfSkippingDropout_ = 0F; onChanged(); return this; } private float learningRate_ ; /** *
       * Between 0 and 1.
       * 
* * float learning_rate = 3; */ public float getLearningRate() { return learningRate_; } /** *
       * Between 0 and 1.
       * 
* * float learning_rate = 3; */ public Builder setLearningRate(float value) { learningRate_ = value; onChanged(); return this; } /** *
       * Between 0 and 1.
       * 
* * float learning_rate = 3; */ public Builder clearLearningRate() { learningRate_ = 0F; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig) } // @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig) private static final tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig(); } public static tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public LearningRateDropoutDrivenConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new LearningRateDropoutDrivenConfig(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearningRateDropoutDrivenConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface LearnerConfigOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.boosted_trees.learner.LearnerConfig) com.google.protobuf.MessageOrBuilder { /** *
     * Number of classes.
     * 
* * uint32 num_classes = 1; */ int getNumClasses(); /** * float feature_fraction_per_tree = 2; */ float getFeatureFractionPerTree(); /** * float feature_fraction_per_level = 3; */ float getFeatureFractionPerLevel(); /** *
     * Regularization.
     * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ boolean hasRegularization(); /** *
     * Regularization.
     * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig getRegularization(); /** *
     * Regularization.
     * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfigOrBuilder getRegularizationOrBuilder(); /** *
     * Constraints.
     * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ boolean hasConstraints(); /** *
     * Constraints.
     * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig getConstraints(); /** *
     * Constraints.
     * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfigOrBuilder getConstraintsOrBuilder(); /** *
     * Pruning. POST_PRUNE is the default pruning mode.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.PruningMode pruning_mode = 8; */ int getPruningModeValue(); /** *
     * Pruning. POST_PRUNE is the default pruning mode.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.PruningMode pruning_mode = 8; */ tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode getPruningMode(); /** *
     * Growing Mode. LAYER_BY_LAYER is the default growing mode.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode growing_mode = 9; */ int getGrowingModeValue(); /** *
     * Growing Mode. LAYER_BY_LAYER is the default growing mode.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode growing_mode = 9; */ tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode getGrowingMode(); /** *
     * Learning rate. By default we use fixed learning rate of 0.1.
     * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ boolean hasLearningRateTuner(); /** *
     * Learning rate. By default we use fixed learning rate of 0.1.
     * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ tensorflow.boosted_trees.learner.Learner.LearningRateConfig getLearningRateTuner(); /** *
     * Learning rate. By default we use fixed learning rate of 0.1.
     * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ tensorflow.boosted_trees.learner.Learner.LearningRateConfigOrBuilder getLearningRateTunerOrBuilder(); /** *
     * Multi-class strategy. By default we use TREE_PER_CLASS for binary
     * classification and linear regression. For other cases, we use
     * DIAGONAL_HESSIAN as the default.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy multi_class_strategy = 10; */ int getMultiClassStrategyValue(); /** *
     * Multi-class strategy. By default we use TREE_PER_CLASS for binary
     * classification and linear regression. For other cases, we use
     * DIAGONAL_HESSIAN as the default.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy multi_class_strategy = 10; */ tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy getMultiClassStrategy(); /** *
     * If you want to average the ensembles (for regularization), provide the
     * config below.
     * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ boolean hasAveragingConfig(); /** *
     * If you want to average the ensembles (for regularization), provide the
     * config below.
     * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ tensorflow.boosted_trees.learner.Learner.AveragingConfig getAveragingConfig(); /** *
     * If you want to average the ensembles (for regularization), provide the
     * config below.
     * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ tensorflow.boosted_trees.learner.Learner.AveragingConfigOrBuilder getAveragingConfigOrBuilder(); /** *
     * By default we use NORMAL_DECISION_TREE as weak learner.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType weak_learner_type = 12; */ int getWeakLearnerTypeValue(); /** *
     * By default we use NORMAL_DECISION_TREE as weak learner.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType weak_learner_type = 12; */ tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType getWeakLearnerType(); public tensorflow.boosted_trees.learner.Learner.LearnerConfig.FeatureFractionCase getFeatureFractionCase(); } /** * Protobuf type {@code tensorflow.boosted_trees.learner.LearnerConfig} */ public static final class LearnerConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.boosted_trees.learner.LearnerConfig) LearnerConfigOrBuilder { private static final long serialVersionUID = 0L; // Use LearnerConfig.newBuilder() to construct. private LearnerConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private LearnerConfig() { numClasses_ = 0; pruningMode_ = 0; growingMode_ = 0; multiClassStrategy_ = 0; weakLearnerType_ = 0; } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private LearnerConfig( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { numClasses_ = input.readUInt32(); break; } case 21: { featureFractionCase_ = 2; featureFraction_ = input.readFloat(); break; } case 29: { featureFractionCase_ = 3; featureFraction_ = input.readFloat(); break; } case 34: { tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.Builder subBuilder = null; if (regularization_ != null) { subBuilder = regularization_.toBuilder(); } regularization_ = input.readMessage(tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(regularization_); regularization_ = subBuilder.buildPartial(); } break; } case 42: { tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.Builder subBuilder = null; if (constraints_ != null) { subBuilder = constraints_.toBuilder(); } constraints_ = input.readMessage(tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(constraints_); constraints_ = subBuilder.buildPartial(); } break; } case 50: { tensorflow.boosted_trees.learner.Learner.LearningRateConfig.Builder subBuilder = null; if (learningRateTuner_ != null) { subBuilder = learningRateTuner_.toBuilder(); } learningRateTuner_ = input.readMessage(tensorflow.boosted_trees.learner.Learner.LearningRateConfig.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(learningRateTuner_); learningRateTuner_ = subBuilder.buildPartial(); } break; } case 64: { int rawValue = input.readEnum(); pruningMode_ = rawValue; break; } case 72: { int rawValue = input.readEnum(); growingMode_ = rawValue; break; } case 80: { int rawValue = input.readEnum(); multiClassStrategy_ = rawValue; break; } case 90: { tensorflow.boosted_trees.learner.Learner.AveragingConfig.Builder subBuilder = null; if (averagingConfig_ != null) { subBuilder = averagingConfig_.toBuilder(); } averagingConfig_ = input.readMessage(tensorflow.boosted_trees.learner.Learner.AveragingConfig.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(averagingConfig_); averagingConfig_ = subBuilder.buildPartial(); } break; } case 96: { int rawValue = input.readEnum(); weakLearnerType_ = rawValue; break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearnerConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearnerConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.LearnerConfig.class, tensorflow.boosted_trees.learner.Learner.LearnerConfig.Builder.class); } /** * Protobuf enum {@code tensorflow.boosted_trees.learner.LearnerConfig.PruningMode} */ public enum PruningMode implements com.google.protobuf.ProtocolMessageEnum { /** * PRUNING_MODE_UNSPECIFIED = 0; */ PRUNING_MODE_UNSPECIFIED(0), /** * PRE_PRUNE = 1; */ PRE_PRUNE(1), /** * POST_PRUNE = 2; */ POST_PRUNE(2), UNRECOGNIZED(-1), ; /** * PRUNING_MODE_UNSPECIFIED = 0; */ public static final int PRUNING_MODE_UNSPECIFIED_VALUE = 0; /** * PRE_PRUNE = 1; */ public static final int PRE_PRUNE_VALUE = 1; /** * POST_PRUNE = 2; */ public static final int POST_PRUNE_VALUE = 2; public final int getNumber() { if (this == UNRECOGNIZED) { throw new java.lang.IllegalArgumentException( "Can't get the number of an unknown enum value."); } return value; } /** * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static PruningMode valueOf(int value) { return forNumber(value); } public static PruningMode forNumber(int value) { switch (value) { case 0: return PRUNING_MODE_UNSPECIFIED; case 1: return PRE_PRUNE; case 2: return POST_PRUNE; default: return null; } } public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap< PruningMode> internalValueMap = new com.google.protobuf.Internal.EnumLiteMap() { public PruningMode findValueByNumber(int number) { return PruningMode.forNumber(number); } }; public final com.google.protobuf.Descriptors.EnumValueDescriptor getValueDescriptor() { return getDescriptor().getValues().get(ordinal()); } public final com.google.protobuf.Descriptors.EnumDescriptor getDescriptorForType() { return getDescriptor(); } public static final com.google.protobuf.Descriptors.EnumDescriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.LearnerConfig.getDescriptor().getEnumTypes().get(0); } private static final PruningMode[] VALUES = values(); public static PruningMode valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException( "EnumValueDescriptor is not for this type."); } if (desc.getIndex() == -1) { return UNRECOGNIZED; } return VALUES[desc.getIndex()]; } private final int value; private PruningMode(int value) { this.value = value; } // @@protoc_insertion_point(enum_scope:tensorflow.boosted_trees.learner.LearnerConfig.PruningMode) } /** * Protobuf enum {@code tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode} */ public enum GrowingMode implements com.google.protobuf.ProtocolMessageEnum { /** * GROWING_MODE_UNSPECIFIED = 0; */ GROWING_MODE_UNSPECIFIED(0), /** * WHOLE_TREE = 1; */ WHOLE_TREE(1), /** * LAYER_BY_LAYER = 2; */ LAYER_BY_LAYER(2), UNRECOGNIZED(-1), ; /** * GROWING_MODE_UNSPECIFIED = 0; */ public static final int GROWING_MODE_UNSPECIFIED_VALUE = 0; /** * WHOLE_TREE = 1; */ public static final int WHOLE_TREE_VALUE = 1; /** * LAYER_BY_LAYER = 2; */ public static final int LAYER_BY_LAYER_VALUE = 2; public final int getNumber() { if (this == UNRECOGNIZED) { throw new java.lang.IllegalArgumentException( "Can't get the number of an unknown enum value."); } return value; } /** * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static GrowingMode valueOf(int value) { return forNumber(value); } public static GrowingMode forNumber(int value) { switch (value) { case 0: return GROWING_MODE_UNSPECIFIED; case 1: return WHOLE_TREE; case 2: return LAYER_BY_LAYER; default: return null; } } public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap< GrowingMode> internalValueMap = new com.google.protobuf.Internal.EnumLiteMap() { public GrowingMode findValueByNumber(int number) { return GrowingMode.forNumber(number); } }; public final com.google.protobuf.Descriptors.EnumValueDescriptor getValueDescriptor() { return getDescriptor().getValues().get(ordinal()); } public final com.google.protobuf.Descriptors.EnumDescriptor getDescriptorForType() { return getDescriptor(); } public static final com.google.protobuf.Descriptors.EnumDescriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.LearnerConfig.getDescriptor().getEnumTypes().get(1); } private static final GrowingMode[] VALUES = values(); public static GrowingMode valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException( "EnumValueDescriptor is not for this type."); } if (desc.getIndex() == -1) { return UNRECOGNIZED; } return VALUES[desc.getIndex()]; } private final int value; private GrowingMode(int value) { this.value = value; } // @@protoc_insertion_point(enum_scope:tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode) } /** * Protobuf enum {@code tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy} */ public enum MultiClassStrategy implements com.google.protobuf.ProtocolMessageEnum { /** * MULTI_CLASS_STRATEGY_UNSPECIFIED = 0; */ MULTI_CLASS_STRATEGY_UNSPECIFIED(0), /** * TREE_PER_CLASS = 1; */ TREE_PER_CLASS(1), /** * FULL_HESSIAN = 2; */ FULL_HESSIAN(2), /** * DIAGONAL_HESSIAN = 3; */ DIAGONAL_HESSIAN(3), UNRECOGNIZED(-1), ; /** * MULTI_CLASS_STRATEGY_UNSPECIFIED = 0; */ public static final int MULTI_CLASS_STRATEGY_UNSPECIFIED_VALUE = 0; /** * TREE_PER_CLASS = 1; */ public static final int TREE_PER_CLASS_VALUE = 1; /** * FULL_HESSIAN = 2; */ public static final int FULL_HESSIAN_VALUE = 2; /** * DIAGONAL_HESSIAN = 3; */ public static final int DIAGONAL_HESSIAN_VALUE = 3; public final int getNumber() { if (this == UNRECOGNIZED) { throw new java.lang.IllegalArgumentException( "Can't get the number of an unknown enum value."); } return value; } /** * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static MultiClassStrategy valueOf(int value) { return forNumber(value); } public static MultiClassStrategy forNumber(int value) { switch (value) { case 0: return MULTI_CLASS_STRATEGY_UNSPECIFIED; case 1: return TREE_PER_CLASS; case 2: return FULL_HESSIAN; case 3: return DIAGONAL_HESSIAN; default: return null; } } public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap< MultiClassStrategy> internalValueMap = new com.google.protobuf.Internal.EnumLiteMap() { public MultiClassStrategy findValueByNumber(int number) { return MultiClassStrategy.forNumber(number); } }; public final com.google.protobuf.Descriptors.EnumValueDescriptor getValueDescriptor() { return getDescriptor().getValues().get(ordinal()); } public final com.google.protobuf.Descriptors.EnumDescriptor getDescriptorForType() { return getDescriptor(); } public static final com.google.protobuf.Descriptors.EnumDescriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.LearnerConfig.getDescriptor().getEnumTypes().get(2); } private static final MultiClassStrategy[] VALUES = values(); public static MultiClassStrategy valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException( "EnumValueDescriptor is not for this type."); } if (desc.getIndex() == -1) { return UNRECOGNIZED; } return VALUES[desc.getIndex()]; } private final int value; private MultiClassStrategy(int value) { this.value = value; } // @@protoc_insertion_point(enum_scope:tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy) } /** * Protobuf enum {@code tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType} */ public enum WeakLearnerType implements com.google.protobuf.ProtocolMessageEnum { /** * NORMAL_DECISION_TREE = 0; */ NORMAL_DECISION_TREE(0), /** * OBLIVIOUS_DECISION_TREE = 1; */ OBLIVIOUS_DECISION_TREE(1), UNRECOGNIZED(-1), ; /** * NORMAL_DECISION_TREE = 0; */ public static final int NORMAL_DECISION_TREE_VALUE = 0; /** * OBLIVIOUS_DECISION_TREE = 1; */ public static final int OBLIVIOUS_DECISION_TREE_VALUE = 1; public final int getNumber() { if (this == UNRECOGNIZED) { throw new java.lang.IllegalArgumentException( "Can't get the number of an unknown enum value."); } return value; } /** * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static WeakLearnerType valueOf(int value) { return forNumber(value); } public static WeakLearnerType forNumber(int value) { switch (value) { case 0: return NORMAL_DECISION_TREE; case 1: return OBLIVIOUS_DECISION_TREE; default: return null; } } public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap< WeakLearnerType> internalValueMap = new com.google.protobuf.Internal.EnumLiteMap() { public WeakLearnerType findValueByNumber(int number) { return WeakLearnerType.forNumber(number); } }; public final com.google.protobuf.Descriptors.EnumValueDescriptor getValueDescriptor() { return getDescriptor().getValues().get(ordinal()); } public final com.google.protobuf.Descriptors.EnumDescriptor getDescriptorForType() { return getDescriptor(); } public static final com.google.protobuf.Descriptors.EnumDescriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.LearnerConfig.getDescriptor().getEnumTypes().get(3); } private static final WeakLearnerType[] VALUES = values(); public static WeakLearnerType valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException( "EnumValueDescriptor is not for this type."); } if (desc.getIndex() == -1) { return UNRECOGNIZED; } return VALUES[desc.getIndex()]; } private final int value; private WeakLearnerType(int value) { this.value = value; } // @@protoc_insertion_point(enum_scope:tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType) } private int featureFractionCase_ = 0; private java.lang.Object featureFraction_; public enum FeatureFractionCase implements com.google.protobuf.Internal.EnumLite { FEATURE_FRACTION_PER_TREE(2), FEATURE_FRACTION_PER_LEVEL(3), FEATUREFRACTION_NOT_SET(0); private final int value; private FeatureFractionCase(int value) { this.value = value; } /** * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static FeatureFractionCase valueOf(int value) { return forNumber(value); } public static FeatureFractionCase forNumber(int value) { switch (value) { case 2: return FEATURE_FRACTION_PER_TREE; case 3: return FEATURE_FRACTION_PER_LEVEL; case 0: return FEATUREFRACTION_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public FeatureFractionCase getFeatureFractionCase() { return FeatureFractionCase.forNumber( featureFractionCase_); } public static final int NUM_CLASSES_FIELD_NUMBER = 1; private int numClasses_; /** *
     * Number of classes.
     * 
* * uint32 num_classes = 1; */ public int getNumClasses() { return numClasses_; } public static final int FEATURE_FRACTION_PER_TREE_FIELD_NUMBER = 2; /** * float feature_fraction_per_tree = 2; */ public float getFeatureFractionPerTree() { if (featureFractionCase_ == 2) { return (java.lang.Float) featureFraction_; } return 0F; } public static final int FEATURE_FRACTION_PER_LEVEL_FIELD_NUMBER = 3; /** * float feature_fraction_per_level = 3; */ public float getFeatureFractionPerLevel() { if (featureFractionCase_ == 3) { return (java.lang.Float) featureFraction_; } return 0F; } public static final int REGULARIZATION_FIELD_NUMBER = 4; private tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig regularization_; /** *
     * Regularization.
     * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ public boolean hasRegularization() { return regularization_ != null; } /** *
     * Regularization.
     * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ public tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig getRegularization() { return regularization_ == null ? tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.getDefaultInstance() : regularization_; } /** *
     * Regularization.
     * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ public tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfigOrBuilder getRegularizationOrBuilder() { return getRegularization(); } public static final int CONSTRAINTS_FIELD_NUMBER = 5; private tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig constraints_; /** *
     * Constraints.
     * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ public boolean hasConstraints() { return constraints_ != null; } /** *
     * Constraints.
     * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ public tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig getConstraints() { return constraints_ == null ? tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.getDefaultInstance() : constraints_; } /** *
     * Constraints.
     * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ public tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfigOrBuilder getConstraintsOrBuilder() { return getConstraints(); } public static final int PRUNING_MODE_FIELD_NUMBER = 8; private int pruningMode_; /** *
     * Pruning. POST_PRUNE is the default pruning mode.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.PruningMode pruning_mode = 8; */ public int getPruningModeValue() { return pruningMode_; } /** *
     * Pruning. POST_PRUNE is the default pruning mode.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.PruningMode pruning_mode = 8; */ public tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode getPruningMode() { @SuppressWarnings("deprecation") tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode result = tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode.valueOf(pruningMode_); return result == null ? tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode.UNRECOGNIZED : result; } public static final int GROWING_MODE_FIELD_NUMBER = 9; private int growingMode_; /** *
     * Growing Mode. LAYER_BY_LAYER is the default growing mode.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode growing_mode = 9; */ public int getGrowingModeValue() { return growingMode_; } /** *
     * Growing Mode. LAYER_BY_LAYER is the default growing mode.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode growing_mode = 9; */ public tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode getGrowingMode() { @SuppressWarnings("deprecation") tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode result = tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode.valueOf(growingMode_); return result == null ? tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode.UNRECOGNIZED : result; } public static final int LEARNING_RATE_TUNER_FIELD_NUMBER = 6; private tensorflow.boosted_trees.learner.Learner.LearningRateConfig learningRateTuner_; /** *
     * Learning rate. By default we use fixed learning rate of 0.1.
     * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ public boolean hasLearningRateTuner() { return learningRateTuner_ != null; } /** *
     * Learning rate. By default we use fixed learning rate of 0.1.
     * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ public tensorflow.boosted_trees.learner.Learner.LearningRateConfig getLearningRateTuner() { return learningRateTuner_ == null ? tensorflow.boosted_trees.learner.Learner.LearningRateConfig.getDefaultInstance() : learningRateTuner_; } /** *
     * Learning rate. By default we use fixed learning rate of 0.1.
     * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ public tensorflow.boosted_trees.learner.Learner.LearningRateConfigOrBuilder getLearningRateTunerOrBuilder() { return getLearningRateTuner(); } public static final int MULTI_CLASS_STRATEGY_FIELD_NUMBER = 10; private int multiClassStrategy_; /** *
     * Multi-class strategy. By default we use TREE_PER_CLASS for binary
     * classification and linear regression. For other cases, we use
     * DIAGONAL_HESSIAN as the default.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy multi_class_strategy = 10; */ public int getMultiClassStrategyValue() { return multiClassStrategy_; } /** *
     * Multi-class strategy. By default we use TREE_PER_CLASS for binary
     * classification and linear regression. For other cases, we use
     * DIAGONAL_HESSIAN as the default.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy multi_class_strategy = 10; */ public tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy getMultiClassStrategy() { @SuppressWarnings("deprecation") tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy result = tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy.valueOf(multiClassStrategy_); return result == null ? tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy.UNRECOGNIZED : result; } public static final int AVERAGING_CONFIG_FIELD_NUMBER = 11; private tensorflow.boosted_trees.learner.Learner.AveragingConfig averagingConfig_; /** *
     * If you want to average the ensembles (for regularization), provide the
     * config below.
     * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ public boolean hasAveragingConfig() { return averagingConfig_ != null; } /** *
     * If you want to average the ensembles (for regularization), provide the
     * config below.
     * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ public tensorflow.boosted_trees.learner.Learner.AveragingConfig getAveragingConfig() { return averagingConfig_ == null ? tensorflow.boosted_trees.learner.Learner.AveragingConfig.getDefaultInstance() : averagingConfig_; } /** *
     * If you want to average the ensembles (for regularization), provide the
     * config below.
     * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ public tensorflow.boosted_trees.learner.Learner.AveragingConfigOrBuilder getAveragingConfigOrBuilder() { return getAveragingConfig(); } public static final int WEAK_LEARNER_TYPE_FIELD_NUMBER = 12; private int weakLearnerType_; /** *
     * By default we use NORMAL_DECISION_TREE as weak learner.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType weak_learner_type = 12; */ public int getWeakLearnerTypeValue() { return weakLearnerType_; } /** *
     * By default we use NORMAL_DECISION_TREE as weak learner.
     * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType weak_learner_type = 12; */ public tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType getWeakLearnerType() { @SuppressWarnings("deprecation") tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType result = tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType.valueOf(weakLearnerType_); return result == null ? tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType.UNRECOGNIZED : result; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (numClasses_ != 0) { output.writeUInt32(1, numClasses_); } if (featureFractionCase_ == 2) { output.writeFloat( 2, (float)((java.lang.Float) featureFraction_)); } if (featureFractionCase_ == 3) { output.writeFloat( 3, (float)((java.lang.Float) featureFraction_)); } if (regularization_ != null) { output.writeMessage(4, getRegularization()); } if (constraints_ != null) { output.writeMessage(5, getConstraints()); } if (learningRateTuner_ != null) { output.writeMessage(6, getLearningRateTuner()); } if (pruningMode_ != tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode.PRUNING_MODE_UNSPECIFIED.getNumber()) { output.writeEnum(8, pruningMode_); } if (growingMode_ != tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode.GROWING_MODE_UNSPECIFIED.getNumber()) { output.writeEnum(9, growingMode_); } if (multiClassStrategy_ != tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy.MULTI_CLASS_STRATEGY_UNSPECIFIED.getNumber()) { output.writeEnum(10, multiClassStrategy_); } if (averagingConfig_ != null) { output.writeMessage(11, getAveragingConfig()); } if (weakLearnerType_ != tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType.NORMAL_DECISION_TREE.getNumber()) { output.writeEnum(12, weakLearnerType_); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (numClasses_ != 0) { size += com.google.protobuf.CodedOutputStream .computeUInt32Size(1, numClasses_); } if (featureFractionCase_ == 2) { size += com.google.protobuf.CodedOutputStream .computeFloatSize( 2, (float)((java.lang.Float) featureFraction_)); } if (featureFractionCase_ == 3) { size += com.google.protobuf.CodedOutputStream .computeFloatSize( 3, (float)((java.lang.Float) featureFraction_)); } if (regularization_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(4, getRegularization()); } if (constraints_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(5, getConstraints()); } if (learningRateTuner_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(6, getLearningRateTuner()); } if (pruningMode_ != tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode.PRUNING_MODE_UNSPECIFIED.getNumber()) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(8, pruningMode_); } if (growingMode_ != tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode.GROWING_MODE_UNSPECIFIED.getNumber()) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(9, growingMode_); } if (multiClassStrategy_ != tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy.MULTI_CLASS_STRATEGY_UNSPECIFIED.getNumber()) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(10, multiClassStrategy_); } if (averagingConfig_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(11, getAveragingConfig()); } if (weakLearnerType_ != tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType.NORMAL_DECISION_TREE.getNumber()) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(12, weakLearnerType_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof tensorflow.boosted_trees.learner.Learner.LearnerConfig)) { return super.equals(obj); } tensorflow.boosted_trees.learner.Learner.LearnerConfig other = (tensorflow.boosted_trees.learner.Learner.LearnerConfig) obj; boolean result = true; result = result && (getNumClasses() == other.getNumClasses()); result = result && (hasRegularization() == other.hasRegularization()); if (hasRegularization()) { result = result && getRegularization() .equals(other.getRegularization()); } result = result && (hasConstraints() == other.hasConstraints()); if (hasConstraints()) { result = result && getConstraints() .equals(other.getConstraints()); } result = result && pruningMode_ == other.pruningMode_; result = result && growingMode_ == other.growingMode_; result = result && (hasLearningRateTuner() == other.hasLearningRateTuner()); if (hasLearningRateTuner()) { result = result && getLearningRateTuner() .equals(other.getLearningRateTuner()); } result = result && multiClassStrategy_ == other.multiClassStrategy_; result = result && (hasAveragingConfig() == other.hasAveragingConfig()); if (hasAveragingConfig()) { result = result && getAveragingConfig() .equals(other.getAveragingConfig()); } result = result && weakLearnerType_ == other.weakLearnerType_; result = result && getFeatureFractionCase().equals( other.getFeatureFractionCase()); if (!result) return false; switch (featureFractionCase_) { case 2: result = result && ( java.lang.Float.floatToIntBits(getFeatureFractionPerTree()) == java.lang.Float.floatToIntBits( other.getFeatureFractionPerTree())); break; case 3: result = result && ( java.lang.Float.floatToIntBits(getFeatureFractionPerLevel()) == java.lang.Float.floatToIntBits( other.getFeatureFractionPerLevel())); break; case 0: default: } result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + NUM_CLASSES_FIELD_NUMBER; hash = (53 * hash) + getNumClasses(); if (hasRegularization()) { hash = (37 * hash) + REGULARIZATION_FIELD_NUMBER; hash = (53 * hash) + getRegularization().hashCode(); } if (hasConstraints()) { hash = (37 * hash) + CONSTRAINTS_FIELD_NUMBER; hash = (53 * hash) + getConstraints().hashCode(); } hash = (37 * hash) + PRUNING_MODE_FIELD_NUMBER; hash = (53 * hash) + pruningMode_; hash = (37 * hash) + GROWING_MODE_FIELD_NUMBER; hash = (53 * hash) + growingMode_; if (hasLearningRateTuner()) { hash = (37 * hash) + LEARNING_RATE_TUNER_FIELD_NUMBER; hash = (53 * hash) + getLearningRateTuner().hashCode(); } hash = (37 * hash) + MULTI_CLASS_STRATEGY_FIELD_NUMBER; hash = (53 * hash) + multiClassStrategy_; if (hasAveragingConfig()) { hash = (37 * hash) + AVERAGING_CONFIG_FIELD_NUMBER; hash = (53 * hash) + getAveragingConfig().hashCode(); } hash = (37 * hash) + WEAK_LEARNER_TYPE_FIELD_NUMBER; hash = (53 * hash) + weakLearnerType_; switch (featureFractionCase_) { case 2: hash = (37 * hash) + FEATURE_FRACTION_PER_TREE_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getFeatureFractionPerTree()); break; case 3: hash = (37 * hash) + FEATURE_FRACTION_PER_LEVEL_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getFeatureFractionPerLevel()); break; case 0: default: } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(tensorflow.boosted_trees.learner.Learner.LearnerConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code tensorflow.boosted_trees.learner.LearnerConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.boosted_trees.learner.LearnerConfig) tensorflow.boosted_trees.learner.Learner.LearnerConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearnerConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearnerConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.boosted_trees.learner.Learner.LearnerConfig.class, tensorflow.boosted_trees.learner.Learner.LearnerConfig.Builder.class); } // Construct using tensorflow.boosted_trees.learner.Learner.LearnerConfig.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); numClasses_ = 0; if (regularizationBuilder_ == null) { regularization_ = null; } else { regularization_ = null; regularizationBuilder_ = null; } if (constraintsBuilder_ == null) { constraints_ = null; } else { constraints_ = null; constraintsBuilder_ = null; } pruningMode_ = 0; growingMode_ = 0; if (learningRateTunerBuilder_ == null) { learningRateTuner_ = null; } else { learningRateTuner_ = null; learningRateTunerBuilder_ = null; } multiClassStrategy_ = 0; if (averagingConfigBuilder_ == null) { averagingConfig_ = null; } else { averagingConfig_ = null; averagingConfigBuilder_ = null; } weakLearnerType_ = 0; featureFractionCase_ = 0; featureFraction_ = null; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return tensorflow.boosted_trees.learner.Learner.internal_static_tensorflow_boosted_trees_learner_LearnerConfig_descriptor; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearnerConfig getDefaultInstanceForType() { return tensorflow.boosted_trees.learner.Learner.LearnerConfig.getDefaultInstance(); } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearnerConfig build() { tensorflow.boosted_trees.learner.Learner.LearnerConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearnerConfig buildPartial() { tensorflow.boosted_trees.learner.Learner.LearnerConfig result = new tensorflow.boosted_trees.learner.Learner.LearnerConfig(this); result.numClasses_ = numClasses_; if (featureFractionCase_ == 2) { result.featureFraction_ = featureFraction_; } if (featureFractionCase_ == 3) { result.featureFraction_ = featureFraction_; } if (regularizationBuilder_ == null) { result.regularization_ = regularization_; } else { result.regularization_ = regularizationBuilder_.build(); } if (constraintsBuilder_ == null) { result.constraints_ = constraints_; } else { result.constraints_ = constraintsBuilder_.build(); } result.pruningMode_ = pruningMode_; result.growingMode_ = growingMode_; if (learningRateTunerBuilder_ == null) { result.learningRateTuner_ = learningRateTuner_; } else { result.learningRateTuner_ = learningRateTunerBuilder_.build(); } result.multiClassStrategy_ = multiClassStrategy_; if (averagingConfigBuilder_ == null) { result.averagingConfig_ = averagingConfig_; } else { result.averagingConfig_ = averagingConfigBuilder_.build(); } result.weakLearnerType_ = weakLearnerType_; result.featureFractionCase_ = featureFractionCase_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof tensorflow.boosted_trees.learner.Learner.LearnerConfig) { return mergeFrom((tensorflow.boosted_trees.learner.Learner.LearnerConfig)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(tensorflow.boosted_trees.learner.Learner.LearnerConfig other) { if (other == tensorflow.boosted_trees.learner.Learner.LearnerConfig.getDefaultInstance()) return this; if (other.getNumClasses() != 0) { setNumClasses(other.getNumClasses()); } if (other.hasRegularization()) { mergeRegularization(other.getRegularization()); } if (other.hasConstraints()) { mergeConstraints(other.getConstraints()); } if (other.pruningMode_ != 0) { setPruningModeValue(other.getPruningModeValue()); } if (other.growingMode_ != 0) { setGrowingModeValue(other.getGrowingModeValue()); } if (other.hasLearningRateTuner()) { mergeLearningRateTuner(other.getLearningRateTuner()); } if (other.multiClassStrategy_ != 0) { setMultiClassStrategyValue(other.getMultiClassStrategyValue()); } if (other.hasAveragingConfig()) { mergeAveragingConfig(other.getAveragingConfig()); } if (other.weakLearnerType_ != 0) { setWeakLearnerTypeValue(other.getWeakLearnerTypeValue()); } switch (other.getFeatureFractionCase()) { case FEATURE_FRACTION_PER_TREE: { setFeatureFractionPerTree(other.getFeatureFractionPerTree()); break; } case FEATURE_FRACTION_PER_LEVEL: { setFeatureFractionPerLevel(other.getFeatureFractionPerLevel()); break; } case FEATUREFRACTION_NOT_SET: { break; } } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { tensorflow.boosted_trees.learner.Learner.LearnerConfig parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (tensorflow.boosted_trees.learner.Learner.LearnerConfig) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int featureFractionCase_ = 0; private java.lang.Object featureFraction_; public FeatureFractionCase getFeatureFractionCase() { return FeatureFractionCase.forNumber( featureFractionCase_); } public Builder clearFeatureFraction() { featureFractionCase_ = 0; featureFraction_ = null; onChanged(); return this; } private int numClasses_ ; /** *
       * Number of classes.
       * 
* * uint32 num_classes = 1; */ public int getNumClasses() { return numClasses_; } /** *
       * Number of classes.
       * 
* * uint32 num_classes = 1; */ public Builder setNumClasses(int value) { numClasses_ = value; onChanged(); return this; } /** *
       * Number of classes.
       * 
* * uint32 num_classes = 1; */ public Builder clearNumClasses() { numClasses_ = 0; onChanged(); return this; } /** * float feature_fraction_per_tree = 2; */ public float getFeatureFractionPerTree() { if (featureFractionCase_ == 2) { return (java.lang.Float) featureFraction_; } return 0F; } /** * float feature_fraction_per_tree = 2; */ public Builder setFeatureFractionPerTree(float value) { featureFractionCase_ = 2; featureFraction_ = value; onChanged(); return this; } /** * float feature_fraction_per_tree = 2; */ public Builder clearFeatureFractionPerTree() { if (featureFractionCase_ == 2) { featureFractionCase_ = 0; featureFraction_ = null; onChanged(); } return this; } /** * float feature_fraction_per_level = 3; */ public float getFeatureFractionPerLevel() { if (featureFractionCase_ == 3) { return (java.lang.Float) featureFraction_; } return 0F; } /** * float feature_fraction_per_level = 3; */ public Builder setFeatureFractionPerLevel(float value) { featureFractionCase_ = 3; featureFraction_ = value; onChanged(); return this; } /** * float feature_fraction_per_level = 3; */ public Builder clearFeatureFractionPerLevel() { if (featureFractionCase_ == 3) { featureFractionCase_ = 0; featureFraction_ = null; onChanged(); } return this; } private tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig regularization_ = null; private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig, tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.Builder, tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfigOrBuilder> regularizationBuilder_; /** *
       * Regularization.
       * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ public boolean hasRegularization() { return regularizationBuilder_ != null || regularization_ != null; } /** *
       * Regularization.
       * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ public tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig getRegularization() { if (regularizationBuilder_ == null) { return regularization_ == null ? tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.getDefaultInstance() : regularization_; } else { return regularizationBuilder_.getMessage(); } } /** *
       * Regularization.
       * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ public Builder setRegularization(tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig value) { if (regularizationBuilder_ == null) { if (value == null) { throw new NullPointerException(); } regularization_ = value; onChanged(); } else { regularizationBuilder_.setMessage(value); } return this; } /** *
       * Regularization.
       * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ public Builder setRegularization( tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.Builder builderForValue) { if (regularizationBuilder_ == null) { regularization_ = builderForValue.build(); onChanged(); } else { regularizationBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * Regularization.
       * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ public Builder mergeRegularization(tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig value) { if (regularizationBuilder_ == null) { if (regularization_ != null) { regularization_ = tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.newBuilder(regularization_).mergeFrom(value).buildPartial(); } else { regularization_ = value; } onChanged(); } else { regularizationBuilder_.mergeFrom(value); } return this; } /** *
       * Regularization.
       * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ public Builder clearRegularization() { if (regularizationBuilder_ == null) { regularization_ = null; onChanged(); } else { regularization_ = null; regularizationBuilder_ = null; } return this; } /** *
       * Regularization.
       * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ public tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.Builder getRegularizationBuilder() { onChanged(); return getRegularizationFieldBuilder().getBuilder(); } /** *
       * Regularization.
       * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ public tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfigOrBuilder getRegularizationOrBuilder() { if (regularizationBuilder_ != null) { return regularizationBuilder_.getMessageOrBuilder(); } else { return regularization_ == null ? tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.getDefaultInstance() : regularization_; } } /** *
       * Regularization.
       * 
* * .tensorflow.boosted_trees.learner.TreeRegularizationConfig regularization = 4; */ private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig, tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.Builder, tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfigOrBuilder> getRegularizationFieldBuilder() { if (regularizationBuilder_ == null) { regularizationBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig, tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfig.Builder, tensorflow.boosted_trees.learner.Learner.TreeRegularizationConfigOrBuilder>( getRegularization(), getParentForChildren(), isClean()); regularization_ = null; } return regularizationBuilder_; } private tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig constraints_ = null; private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig, tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.Builder, tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfigOrBuilder> constraintsBuilder_; /** *
       * Constraints.
       * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ public boolean hasConstraints() { return constraintsBuilder_ != null || constraints_ != null; } /** *
       * Constraints.
       * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ public tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig getConstraints() { if (constraintsBuilder_ == null) { return constraints_ == null ? tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.getDefaultInstance() : constraints_; } else { return constraintsBuilder_.getMessage(); } } /** *
       * Constraints.
       * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ public Builder setConstraints(tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig value) { if (constraintsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } constraints_ = value; onChanged(); } else { constraintsBuilder_.setMessage(value); } return this; } /** *
       * Constraints.
       * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ public Builder setConstraints( tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.Builder builderForValue) { if (constraintsBuilder_ == null) { constraints_ = builderForValue.build(); onChanged(); } else { constraintsBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * Constraints.
       * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ public Builder mergeConstraints(tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig value) { if (constraintsBuilder_ == null) { if (constraints_ != null) { constraints_ = tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.newBuilder(constraints_).mergeFrom(value).buildPartial(); } else { constraints_ = value; } onChanged(); } else { constraintsBuilder_.mergeFrom(value); } return this; } /** *
       * Constraints.
       * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ public Builder clearConstraints() { if (constraintsBuilder_ == null) { constraints_ = null; onChanged(); } else { constraints_ = null; constraintsBuilder_ = null; } return this; } /** *
       * Constraints.
       * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ public tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.Builder getConstraintsBuilder() { onChanged(); return getConstraintsFieldBuilder().getBuilder(); } /** *
       * Constraints.
       * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ public tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfigOrBuilder getConstraintsOrBuilder() { if (constraintsBuilder_ != null) { return constraintsBuilder_.getMessageOrBuilder(); } else { return constraints_ == null ? tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.getDefaultInstance() : constraints_; } } /** *
       * Constraints.
       * 
* * .tensorflow.boosted_trees.learner.TreeConstraintsConfig constraints = 5; */ private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig, tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.Builder, tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfigOrBuilder> getConstraintsFieldBuilder() { if (constraintsBuilder_ == null) { constraintsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig, tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfig.Builder, tensorflow.boosted_trees.learner.Learner.TreeConstraintsConfigOrBuilder>( getConstraints(), getParentForChildren(), isClean()); constraints_ = null; } return constraintsBuilder_; } private int pruningMode_ = 0; /** *
       * Pruning. POST_PRUNE is the default pruning mode.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.PruningMode pruning_mode = 8; */ public int getPruningModeValue() { return pruningMode_; } /** *
       * Pruning. POST_PRUNE is the default pruning mode.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.PruningMode pruning_mode = 8; */ public Builder setPruningModeValue(int value) { pruningMode_ = value; onChanged(); return this; } /** *
       * Pruning. POST_PRUNE is the default pruning mode.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.PruningMode pruning_mode = 8; */ public tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode getPruningMode() { @SuppressWarnings("deprecation") tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode result = tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode.valueOf(pruningMode_); return result == null ? tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode.UNRECOGNIZED : result; } /** *
       * Pruning. POST_PRUNE is the default pruning mode.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.PruningMode pruning_mode = 8; */ public Builder setPruningMode(tensorflow.boosted_trees.learner.Learner.LearnerConfig.PruningMode value) { if (value == null) { throw new NullPointerException(); } pruningMode_ = value.getNumber(); onChanged(); return this; } /** *
       * Pruning. POST_PRUNE is the default pruning mode.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.PruningMode pruning_mode = 8; */ public Builder clearPruningMode() { pruningMode_ = 0; onChanged(); return this; } private int growingMode_ = 0; /** *
       * Growing Mode. LAYER_BY_LAYER is the default growing mode.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode growing_mode = 9; */ public int getGrowingModeValue() { return growingMode_; } /** *
       * Growing Mode. LAYER_BY_LAYER is the default growing mode.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode growing_mode = 9; */ public Builder setGrowingModeValue(int value) { growingMode_ = value; onChanged(); return this; } /** *
       * Growing Mode. LAYER_BY_LAYER is the default growing mode.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode growing_mode = 9; */ public tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode getGrowingMode() { @SuppressWarnings("deprecation") tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode result = tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode.valueOf(growingMode_); return result == null ? tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode.UNRECOGNIZED : result; } /** *
       * Growing Mode. LAYER_BY_LAYER is the default growing mode.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode growing_mode = 9; */ public Builder setGrowingMode(tensorflow.boosted_trees.learner.Learner.LearnerConfig.GrowingMode value) { if (value == null) { throw new NullPointerException(); } growingMode_ = value.getNumber(); onChanged(); return this; } /** *
       * Growing Mode. LAYER_BY_LAYER is the default growing mode.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode growing_mode = 9; */ public Builder clearGrowingMode() { growingMode_ = 0; onChanged(); return this; } private tensorflow.boosted_trees.learner.Learner.LearningRateConfig learningRateTuner_ = null; private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateConfig, tensorflow.boosted_trees.learner.Learner.LearningRateConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateConfigOrBuilder> learningRateTunerBuilder_; /** *
       * Learning rate. By default we use fixed learning rate of 0.1.
       * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ public boolean hasLearningRateTuner() { return learningRateTunerBuilder_ != null || learningRateTuner_ != null; } /** *
       * Learning rate. By default we use fixed learning rate of 0.1.
       * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ public tensorflow.boosted_trees.learner.Learner.LearningRateConfig getLearningRateTuner() { if (learningRateTunerBuilder_ == null) { return learningRateTuner_ == null ? tensorflow.boosted_trees.learner.Learner.LearningRateConfig.getDefaultInstance() : learningRateTuner_; } else { return learningRateTunerBuilder_.getMessage(); } } /** *
       * Learning rate. By default we use fixed learning rate of 0.1.
       * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ public Builder setLearningRateTuner(tensorflow.boosted_trees.learner.Learner.LearningRateConfig value) { if (learningRateTunerBuilder_ == null) { if (value == null) { throw new NullPointerException(); } learningRateTuner_ = value; onChanged(); } else { learningRateTunerBuilder_.setMessage(value); } return this; } /** *
       * Learning rate. By default we use fixed learning rate of 0.1.
       * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ public Builder setLearningRateTuner( tensorflow.boosted_trees.learner.Learner.LearningRateConfig.Builder builderForValue) { if (learningRateTunerBuilder_ == null) { learningRateTuner_ = builderForValue.build(); onChanged(); } else { learningRateTunerBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * Learning rate. By default we use fixed learning rate of 0.1.
       * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ public Builder mergeLearningRateTuner(tensorflow.boosted_trees.learner.Learner.LearningRateConfig value) { if (learningRateTunerBuilder_ == null) { if (learningRateTuner_ != null) { learningRateTuner_ = tensorflow.boosted_trees.learner.Learner.LearningRateConfig.newBuilder(learningRateTuner_).mergeFrom(value).buildPartial(); } else { learningRateTuner_ = value; } onChanged(); } else { learningRateTunerBuilder_.mergeFrom(value); } return this; } /** *
       * Learning rate. By default we use fixed learning rate of 0.1.
       * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ public Builder clearLearningRateTuner() { if (learningRateTunerBuilder_ == null) { learningRateTuner_ = null; onChanged(); } else { learningRateTuner_ = null; learningRateTunerBuilder_ = null; } return this; } /** *
       * Learning rate. By default we use fixed learning rate of 0.1.
       * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ public tensorflow.boosted_trees.learner.Learner.LearningRateConfig.Builder getLearningRateTunerBuilder() { onChanged(); return getLearningRateTunerFieldBuilder().getBuilder(); } /** *
       * Learning rate. By default we use fixed learning rate of 0.1.
       * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ public tensorflow.boosted_trees.learner.Learner.LearningRateConfigOrBuilder getLearningRateTunerOrBuilder() { if (learningRateTunerBuilder_ != null) { return learningRateTunerBuilder_.getMessageOrBuilder(); } else { return learningRateTuner_ == null ? tensorflow.boosted_trees.learner.Learner.LearningRateConfig.getDefaultInstance() : learningRateTuner_; } } /** *
       * Learning rate. By default we use fixed learning rate of 0.1.
       * 
* * .tensorflow.boosted_trees.learner.LearningRateConfig learning_rate_tuner = 6; */ private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateConfig, tensorflow.boosted_trees.learner.Learner.LearningRateConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateConfigOrBuilder> getLearningRateTunerFieldBuilder() { if (learningRateTunerBuilder_ == null) { learningRateTunerBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.LearningRateConfig, tensorflow.boosted_trees.learner.Learner.LearningRateConfig.Builder, tensorflow.boosted_trees.learner.Learner.LearningRateConfigOrBuilder>( getLearningRateTuner(), getParentForChildren(), isClean()); learningRateTuner_ = null; } return learningRateTunerBuilder_; } private int multiClassStrategy_ = 0; /** *
       * Multi-class strategy. By default we use TREE_PER_CLASS for binary
       * classification and linear regression. For other cases, we use
       * DIAGONAL_HESSIAN as the default.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy multi_class_strategy = 10; */ public int getMultiClassStrategyValue() { return multiClassStrategy_; } /** *
       * Multi-class strategy. By default we use TREE_PER_CLASS for binary
       * classification and linear regression. For other cases, we use
       * DIAGONAL_HESSIAN as the default.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy multi_class_strategy = 10; */ public Builder setMultiClassStrategyValue(int value) { multiClassStrategy_ = value; onChanged(); return this; } /** *
       * Multi-class strategy. By default we use TREE_PER_CLASS for binary
       * classification and linear regression. For other cases, we use
       * DIAGONAL_HESSIAN as the default.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy multi_class_strategy = 10; */ public tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy getMultiClassStrategy() { @SuppressWarnings("deprecation") tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy result = tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy.valueOf(multiClassStrategy_); return result == null ? tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy.UNRECOGNIZED : result; } /** *
       * Multi-class strategy. By default we use TREE_PER_CLASS for binary
       * classification and linear regression. For other cases, we use
       * DIAGONAL_HESSIAN as the default.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy multi_class_strategy = 10; */ public Builder setMultiClassStrategy(tensorflow.boosted_trees.learner.Learner.LearnerConfig.MultiClassStrategy value) { if (value == null) { throw new NullPointerException(); } multiClassStrategy_ = value.getNumber(); onChanged(); return this; } /** *
       * Multi-class strategy. By default we use TREE_PER_CLASS for binary
       * classification and linear regression. For other cases, we use
       * DIAGONAL_HESSIAN as the default.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy multi_class_strategy = 10; */ public Builder clearMultiClassStrategy() { multiClassStrategy_ = 0; onChanged(); return this; } private tensorflow.boosted_trees.learner.Learner.AveragingConfig averagingConfig_ = null; private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.AveragingConfig, tensorflow.boosted_trees.learner.Learner.AveragingConfig.Builder, tensorflow.boosted_trees.learner.Learner.AveragingConfigOrBuilder> averagingConfigBuilder_; /** *
       * If you want to average the ensembles (for regularization), provide the
       * config below.
       * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ public boolean hasAveragingConfig() { return averagingConfigBuilder_ != null || averagingConfig_ != null; } /** *
       * If you want to average the ensembles (for regularization), provide the
       * config below.
       * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ public tensorflow.boosted_trees.learner.Learner.AveragingConfig getAveragingConfig() { if (averagingConfigBuilder_ == null) { return averagingConfig_ == null ? tensorflow.boosted_trees.learner.Learner.AveragingConfig.getDefaultInstance() : averagingConfig_; } else { return averagingConfigBuilder_.getMessage(); } } /** *
       * If you want to average the ensembles (for regularization), provide the
       * config below.
       * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ public Builder setAveragingConfig(tensorflow.boosted_trees.learner.Learner.AveragingConfig value) { if (averagingConfigBuilder_ == null) { if (value == null) { throw new NullPointerException(); } averagingConfig_ = value; onChanged(); } else { averagingConfigBuilder_.setMessage(value); } return this; } /** *
       * If you want to average the ensembles (for regularization), provide the
       * config below.
       * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ public Builder setAveragingConfig( tensorflow.boosted_trees.learner.Learner.AveragingConfig.Builder builderForValue) { if (averagingConfigBuilder_ == null) { averagingConfig_ = builderForValue.build(); onChanged(); } else { averagingConfigBuilder_.setMessage(builderForValue.build()); } return this; } /** *
       * If you want to average the ensembles (for regularization), provide the
       * config below.
       * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ public Builder mergeAveragingConfig(tensorflow.boosted_trees.learner.Learner.AveragingConfig value) { if (averagingConfigBuilder_ == null) { if (averagingConfig_ != null) { averagingConfig_ = tensorflow.boosted_trees.learner.Learner.AveragingConfig.newBuilder(averagingConfig_).mergeFrom(value).buildPartial(); } else { averagingConfig_ = value; } onChanged(); } else { averagingConfigBuilder_.mergeFrom(value); } return this; } /** *
       * If you want to average the ensembles (for regularization), provide the
       * config below.
       * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ public Builder clearAveragingConfig() { if (averagingConfigBuilder_ == null) { averagingConfig_ = null; onChanged(); } else { averagingConfig_ = null; averagingConfigBuilder_ = null; } return this; } /** *
       * If you want to average the ensembles (for regularization), provide the
       * config below.
       * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ public tensorflow.boosted_trees.learner.Learner.AveragingConfig.Builder getAveragingConfigBuilder() { onChanged(); return getAveragingConfigFieldBuilder().getBuilder(); } /** *
       * If you want to average the ensembles (for regularization), provide the
       * config below.
       * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ public tensorflow.boosted_trees.learner.Learner.AveragingConfigOrBuilder getAveragingConfigOrBuilder() { if (averagingConfigBuilder_ != null) { return averagingConfigBuilder_.getMessageOrBuilder(); } else { return averagingConfig_ == null ? tensorflow.boosted_trees.learner.Learner.AveragingConfig.getDefaultInstance() : averagingConfig_; } } /** *
       * If you want to average the ensembles (for regularization), provide the
       * config below.
       * 
* * .tensorflow.boosted_trees.learner.AveragingConfig averaging_config = 11; */ private com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.AveragingConfig, tensorflow.boosted_trees.learner.Learner.AveragingConfig.Builder, tensorflow.boosted_trees.learner.Learner.AveragingConfigOrBuilder> getAveragingConfigFieldBuilder() { if (averagingConfigBuilder_ == null) { averagingConfigBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< tensorflow.boosted_trees.learner.Learner.AveragingConfig, tensorflow.boosted_trees.learner.Learner.AveragingConfig.Builder, tensorflow.boosted_trees.learner.Learner.AveragingConfigOrBuilder>( getAveragingConfig(), getParentForChildren(), isClean()); averagingConfig_ = null; } return averagingConfigBuilder_; } private int weakLearnerType_ = 0; /** *
       * By default we use NORMAL_DECISION_TREE as weak learner.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType weak_learner_type = 12; */ public int getWeakLearnerTypeValue() { return weakLearnerType_; } /** *
       * By default we use NORMAL_DECISION_TREE as weak learner.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType weak_learner_type = 12; */ public Builder setWeakLearnerTypeValue(int value) { weakLearnerType_ = value; onChanged(); return this; } /** *
       * By default we use NORMAL_DECISION_TREE as weak learner.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType weak_learner_type = 12; */ public tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType getWeakLearnerType() { @SuppressWarnings("deprecation") tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType result = tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType.valueOf(weakLearnerType_); return result == null ? tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType.UNRECOGNIZED : result; } /** *
       * By default we use NORMAL_DECISION_TREE as weak learner.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType weak_learner_type = 12; */ public Builder setWeakLearnerType(tensorflow.boosted_trees.learner.Learner.LearnerConfig.WeakLearnerType value) { if (value == null) { throw new NullPointerException(); } weakLearnerType_ = value.getNumber(); onChanged(); return this; } /** *
       * By default we use NORMAL_DECISION_TREE as weak learner.
       * 
* * .tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType weak_learner_type = 12; */ public Builder clearWeakLearnerType() { weakLearnerType_ = 0; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.boosted_trees.learner.LearnerConfig) } // @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.LearnerConfig) private static final tensorflow.boosted_trees.learner.Learner.LearnerConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new tensorflow.boosted_trees.learner.Learner.LearnerConfig(); } public static tensorflow.boosted_trees.learner.Learner.LearnerConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public LearnerConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new LearnerConfig(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public tensorflow.boosted_trees.learner.Learner.LearnerConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_boosted_trees_learner_TreeRegularizationConfig_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_boosted_trees_learner_TreeRegularizationConfig_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_boosted_trees_learner_TreeConstraintsConfig_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_boosted_trees_learner_TreeConstraintsConfig_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_boosted_trees_learner_LearningRateConfig_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_boosted_trees_learner_LearningRateConfig_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_boosted_trees_learner_LearningRateFixedConfig_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_boosted_trees_learner_LearningRateFixedConfig_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_boosted_trees_learner_LearningRateLineSearchConfig_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_boosted_trees_learner_LearningRateLineSearchConfig_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_boosted_trees_learner_AveragingConfig_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_boosted_trees_learner_AveragingConfig_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_boosted_trees_learner_LearningRateDropoutDrivenConfig_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_boosted_trees_learner_LearningRateDropoutDrivenConfig_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_boosted_trees_learner_LearnerConfig_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_boosted_trees_learner_LearnerConfig_fieldAccessorTable; public static com.google.protobuf.Descriptors.FileDescriptor getDescriptor() { return descriptor; } private static com.google.protobuf.Descriptors.FileDescriptor descriptor; static { java.lang.String[] descriptorData = { "\n4tensorflow/contrib/boosted_trees/proto" + "/learner.proto\022 tensorflow.boosted_trees" + ".learner\"K\n\030TreeRegularizationConfig\022\n\n\002" + "l1\030\001 \001(\002\022\n\n\002l2\030\002 \001(\002\022\027\n\017tree_complexity\030" + "\003 \001(\002\"v\n\025TreeConstraintsConfig\022\026\n\016max_tr" + "ee_depth\030\001 \001(\r\022\027\n\017min_node_weight\030\002 \001(\002\022" + ",\n$max_number_of_unique_feature_columns\030" + "\003 \001(\003\"\226\002\n\022LearningRateConfig\022J\n\005fixed\030\001 " + "\001(\01329.tensorflow.boosted_trees.learner.L" + "earningRateFixedConfigH\000\022T\n\007dropout\030\002 \001(" + "\0132A.tensorflow.boosted_trees.learner.Lea" + "rningRateDropoutDrivenConfigH\000\022U\n\013line_s" + "earch\030\003 \001(\0132>.tensorflow.boosted_trees.l" + "earner.LearningRateLineSearchConfigH\000B\007\n" + "\005tuner\"0\n\027LearningRateFixedConfig\022\025\n\rlea" + "rning_rate\030\001 \001(\002\"L\n\034LearningRateLineSear" + "chConfig\022\031\n\021max_learning_rate\030\001 \001(\002\022\021\n\tn" + "um_steps\030\002 \001(\005\"a\n\017AveragingConfig\022\036\n\024ave" + "rage_last_n_trees\030\001 \001(\002H\000\022$\n\032average_las" + "t_percent_trees\030\002 \001(\002H\000B\010\n\006config\"~\n\037Lea" + "rningRateDropoutDrivenConfig\022\033\n\023dropout_" + "probability\030\001 \001(\002\022\'\n\037probability_of_skip" + "ping_dropout\030\002 \001(\002\022\025\n\rlearning_rate\030\003 \001(" + "\002\"\210\t\n\rLearnerConfig\022\023\n\013num_classes\030\001 \001(\r" + "\022#\n\031feature_fraction_per_tree\030\002 \001(\002H\000\022$\n" + "\032feature_fraction_per_level\030\003 \001(\002H\000\022R\n\016r" + "egularization\030\004 \001(\0132:.tensorflow.boosted" + "_trees.learner.TreeRegularizationConfig\022" + "L\n\013constraints\030\005 \001(\01327.tensorflow.booste" + "d_trees.learner.TreeConstraintsConfig\022Q\n" + "\014pruning_mode\030\010 \001(\0162;.tensorflow.boosted" + "_trees.learner.LearnerConfig.PruningMode" + "\022Q\n\014growing_mode\030\t \001(\0162;.tensorflow.boos" + "ted_trees.learner.LearnerConfig.GrowingM" + "ode\022Q\n\023learning_rate_tuner\030\006 \001(\01324.tenso" + "rflow.boosted_trees.learner.LearningRate" + "Config\022`\n\024multi_class_strategy\030\n \001(\0162B.t" + "ensorflow.boosted_trees.learner.LearnerC" + "onfig.MultiClassStrategy\022K\n\020averaging_co" + "nfig\030\013 \001(\01321.tensorflow.boosted_trees.le" + "arner.AveragingConfig\022Z\n\021weak_learner_ty" + "pe\030\014 \001(\0162?.tensorflow.boosted_trees.lear" + "ner.LearnerConfig.WeakLearnerType\"J\n\013Pru" + "ningMode\022\034\n\030PRUNING_MODE_UNSPECIFIED\020\000\022\r" + "\n\tPRE_PRUNE\020\001\022\016\n\nPOST_PRUNE\020\002\"O\n\013Growing" + "Mode\022\034\n\030GROWING_MODE_UNSPECIFIED\020\000\022\016\n\nWH" + "OLE_TREE\020\001\022\022\n\016LAYER_BY_LAYER\020\002\"v\n\022MultiC" + "lassStrategy\022$\n MULTI_CLASS_STRATEGY_UNS" + "PECIFIED\020\000\022\022\n\016TREE_PER_CLASS\020\001\022\020\n\014FULL_H" + "ESSIAN\020\002\022\024\n\020DIAGONAL_HESSIAN\020\003\"H\n\017WeakLe" + "arnerType\022\030\n\024NORMAL_DECISION_TREE\020\000\022\033\n\027O" + "BLIVIOUS_DECISION_TREE\020\001B\022\n\020feature_frac" + "tionB\003\370\001\001b\006proto3" }; com.google.protobuf.Descriptors.FileDescriptor.InternalDescriptorAssigner assigner = new com.google.protobuf.Descriptors.FileDescriptor. InternalDescriptorAssigner() { public com.google.protobuf.ExtensionRegistry assignDescriptors( com.google.protobuf.Descriptors.FileDescriptor root) { descriptor = root; return null; } }; com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, new com.google.protobuf.Descriptors.FileDescriptor[] { }, assigner); internal_static_tensorflow_boosted_trees_learner_TreeRegularizationConfig_descriptor = getDescriptor().getMessageTypes().get(0); internal_static_tensorflow_boosted_trees_learner_TreeRegularizationConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_boosted_trees_learner_TreeRegularizationConfig_descriptor, new java.lang.String[] { "L1", "L2", "TreeComplexity", }); internal_static_tensorflow_boosted_trees_learner_TreeConstraintsConfig_descriptor = getDescriptor().getMessageTypes().get(1); internal_static_tensorflow_boosted_trees_learner_TreeConstraintsConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_boosted_trees_learner_TreeConstraintsConfig_descriptor, new java.lang.String[] { "MaxTreeDepth", "MinNodeWeight", "MaxNumberOfUniqueFeatureColumns", }); internal_static_tensorflow_boosted_trees_learner_LearningRateConfig_descriptor = getDescriptor().getMessageTypes().get(2); internal_static_tensorflow_boosted_trees_learner_LearningRateConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_boosted_trees_learner_LearningRateConfig_descriptor, new java.lang.String[] { "Fixed", "Dropout", "LineSearch", "Tuner", }); internal_static_tensorflow_boosted_trees_learner_LearningRateFixedConfig_descriptor = getDescriptor().getMessageTypes().get(3); internal_static_tensorflow_boosted_trees_learner_LearningRateFixedConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_boosted_trees_learner_LearningRateFixedConfig_descriptor, new java.lang.String[] { "LearningRate", }); internal_static_tensorflow_boosted_trees_learner_LearningRateLineSearchConfig_descriptor = getDescriptor().getMessageTypes().get(4); internal_static_tensorflow_boosted_trees_learner_LearningRateLineSearchConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_boosted_trees_learner_LearningRateLineSearchConfig_descriptor, new java.lang.String[] { "MaxLearningRate", "NumSteps", }); internal_static_tensorflow_boosted_trees_learner_AveragingConfig_descriptor = getDescriptor().getMessageTypes().get(5); internal_static_tensorflow_boosted_trees_learner_AveragingConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_boosted_trees_learner_AveragingConfig_descriptor, new java.lang.String[] { "AverageLastNTrees", "AverageLastPercentTrees", "Config", }); internal_static_tensorflow_boosted_trees_learner_LearningRateDropoutDrivenConfig_descriptor = getDescriptor().getMessageTypes().get(6); internal_static_tensorflow_boosted_trees_learner_LearningRateDropoutDrivenConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_boosted_trees_learner_LearningRateDropoutDrivenConfig_descriptor, new java.lang.String[] { "DropoutProbability", "ProbabilityOfSkippingDropout", "LearningRate", }); internal_static_tensorflow_boosted_trees_learner_LearnerConfig_descriptor = getDescriptor().getMessageTypes().get(7); internal_static_tensorflow_boosted_trees_learner_LearnerConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_boosted_trees_learner_LearnerConfig_descriptor, new java.lang.String[] { "NumClasses", "FeatureFractionPerTree", "FeatureFractionPerLevel", "Regularization", "Constraints", "PruningMode", "GrowingMode", "LearningRateTuner", "MultiClassStrategy", "AveragingConfig", "WeakLearnerType", "FeatureFraction", }); } // @@protoc_insertion_point(outer_class_scope) }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy