All Downloads are FREE. Search and download functionalities are using the official Maven repository.

tensorflow.tpu.Topology Maven / Gradle / Ivy

The newest version!
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow/contrib/tpu/proto/topology.proto

package tensorflow.tpu;

public final class Topology {
  private Topology() {}
  public static void registerAllExtensions(
      com.google.protobuf.ExtensionRegistryLite registry) {
  }

  public static void registerAllExtensions(
      com.google.protobuf.ExtensionRegistry registry) {
    registerAllExtensions(
        (com.google.protobuf.ExtensionRegistryLite) registry);
  }
  public interface TopologyProtoOrBuilder extends
      // @@protoc_insertion_point(interface_extends:tensorflow.tpu.TopologyProto)
      com.google.protobuf.MessageOrBuilder {

    /**
     * 
     * The dimensions of the TPU topology, in cores. Typically, this is a 3D
     * topology [x, y, core], where the major dimensions correspond to TPU chips,
     * and the minor dimension describes the number of cores on a multicore chip.
     * 
* * repeated int32 mesh_shape = 1; */ java.util.List getMeshShapeList(); /** *
     * The dimensions of the TPU topology, in cores. Typically, this is a 3D
     * topology [x, y, core], where the major dimensions correspond to TPU chips,
     * and the minor dimension describes the number of cores on a multicore chip.
     * 
* * repeated int32 mesh_shape = 1; */ int getMeshShapeCount(); /** *
     * The dimensions of the TPU topology, in cores. Typically, this is a 3D
     * topology [x, y, core], where the major dimensions correspond to TPU chips,
     * and the minor dimension describes the number of cores on a multicore chip.
     * 
* * repeated int32 mesh_shape = 1; */ int getMeshShape(int index); /** *
     * Number of TensorFlow tasks in the cluster.
     * 
* * int32 num_tasks = 2; */ int getNumTasks(); /** *
     * Number of TPU devices per task.
     * 
* * int32 num_tpu_devices_per_task = 3; */ int getNumTpuDevicesPerTask(); /** *
     * A flattened rank 3 int32 array with shape
     * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
     * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
     * of TPU devices per task, and the minor dimension corresponds to a position
     * in the TPU mesh topology. Each entry [task, device, axis] gives the
     * `axis`-th coordinate in the topology of a task/device pair.
     * 
* * repeated int32 device_coordinates = 4; */ java.util.List getDeviceCoordinatesList(); /** *
     * A flattened rank 3 int32 array with shape
     * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
     * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
     * of TPU devices per task, and the minor dimension corresponds to a position
     * in the TPU mesh topology. Each entry [task, device, axis] gives the
     * `axis`-th coordinate in the topology of a task/device pair.
     * 
* * repeated int32 device_coordinates = 4; */ int getDeviceCoordinatesCount(); /** *
     * A flattened rank 3 int32 array with shape
     * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
     * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
     * of TPU devices per task, and the minor dimension corresponds to a position
     * in the TPU mesh topology. Each entry [task, device, axis] gives the
     * `axis`-th coordinate in the topology of a task/device pair.
     * 
* * repeated int32 device_coordinates = 4; */ int getDeviceCoordinates(int index); } /** *
   * Describes the geometry of a TPU mesh.
   * 
* * Protobuf type {@code tensorflow.tpu.TopologyProto} */ public static final class TopologyProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.tpu.TopologyProto) TopologyProtoOrBuilder { private static final long serialVersionUID = 0L; // Use TopologyProto.newBuilder() to construct. private TopologyProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private TopologyProto() { meshShape_ = java.util.Collections.emptyList(); numTasks_ = 0; numTpuDevicesPerTask_ = 0; deviceCoordinates_ = java.util.Collections.emptyList(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private TopologyProto( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { if (!((mutable_bitField0_ & 0x00000001) == 0x00000001)) { meshShape_ = new java.util.ArrayList(); mutable_bitField0_ |= 0x00000001; } meshShape_.add(input.readInt32()); break; } case 10: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); if (!((mutable_bitField0_ & 0x00000001) == 0x00000001) && input.getBytesUntilLimit() > 0) { meshShape_ = new java.util.ArrayList(); mutable_bitField0_ |= 0x00000001; } while (input.getBytesUntilLimit() > 0) { meshShape_.add(input.readInt32()); } input.popLimit(limit); break; } case 16: { numTasks_ = input.readInt32(); break; } case 24: { numTpuDevicesPerTask_ = input.readInt32(); break; } case 32: { if (!((mutable_bitField0_ & 0x00000008) == 0x00000008)) { deviceCoordinates_ = new java.util.ArrayList(); mutable_bitField0_ |= 0x00000008; } deviceCoordinates_.add(input.readInt32()); break; } case 34: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); if (!((mutable_bitField0_ & 0x00000008) == 0x00000008) && input.getBytesUntilLimit() > 0) { deviceCoordinates_ = new java.util.ArrayList(); mutable_bitField0_ |= 0x00000008; } while (input.getBytesUntilLimit() > 0) { deviceCoordinates_.add(input.readInt32()); } input.popLimit(limit); break; } default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { if (((mutable_bitField0_ & 0x00000001) == 0x00000001)) { meshShape_ = java.util.Collections.unmodifiableList(meshShape_); } if (((mutable_bitField0_ & 0x00000008) == 0x00000008)) { deviceCoordinates_ = java.util.Collections.unmodifiableList(deviceCoordinates_); } this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.tpu.Topology.internal_static_tensorflow_tpu_TopologyProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.tpu.Topology.internal_static_tensorflow_tpu_TopologyProto_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.tpu.Topology.TopologyProto.class, tensorflow.tpu.Topology.TopologyProto.Builder.class); } private int bitField0_; public static final int MESH_SHAPE_FIELD_NUMBER = 1; private java.util.List meshShape_; /** *
     * The dimensions of the TPU topology, in cores. Typically, this is a 3D
     * topology [x, y, core], where the major dimensions correspond to TPU chips,
     * and the minor dimension describes the number of cores on a multicore chip.
     * 
* * repeated int32 mesh_shape = 1; */ public java.util.List getMeshShapeList() { return meshShape_; } /** *
     * The dimensions of the TPU topology, in cores. Typically, this is a 3D
     * topology [x, y, core], where the major dimensions correspond to TPU chips,
     * and the minor dimension describes the number of cores on a multicore chip.
     * 
* * repeated int32 mesh_shape = 1; */ public int getMeshShapeCount() { return meshShape_.size(); } /** *
     * The dimensions of the TPU topology, in cores. Typically, this is a 3D
     * topology [x, y, core], where the major dimensions correspond to TPU chips,
     * and the minor dimension describes the number of cores on a multicore chip.
     * 
* * repeated int32 mesh_shape = 1; */ public int getMeshShape(int index) { return meshShape_.get(index); } private int meshShapeMemoizedSerializedSize = -1; public static final int NUM_TASKS_FIELD_NUMBER = 2; private int numTasks_; /** *
     * Number of TensorFlow tasks in the cluster.
     * 
* * int32 num_tasks = 2; */ public int getNumTasks() { return numTasks_; } public static final int NUM_TPU_DEVICES_PER_TASK_FIELD_NUMBER = 3; private int numTpuDevicesPerTask_; /** *
     * Number of TPU devices per task.
     * 
* * int32 num_tpu_devices_per_task = 3; */ public int getNumTpuDevicesPerTask() { return numTpuDevicesPerTask_; } public static final int DEVICE_COORDINATES_FIELD_NUMBER = 4; private java.util.List deviceCoordinates_; /** *
     * A flattened rank 3 int32 array with shape
     * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
     * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
     * of TPU devices per task, and the minor dimension corresponds to a position
     * in the TPU mesh topology. Each entry [task, device, axis] gives the
     * `axis`-th coordinate in the topology of a task/device pair.
     * 
* * repeated int32 device_coordinates = 4; */ public java.util.List getDeviceCoordinatesList() { return deviceCoordinates_; } /** *
     * A flattened rank 3 int32 array with shape
     * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
     * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
     * of TPU devices per task, and the minor dimension corresponds to a position
     * in the TPU mesh topology. Each entry [task, device, axis] gives the
     * `axis`-th coordinate in the topology of a task/device pair.
     * 
* * repeated int32 device_coordinates = 4; */ public int getDeviceCoordinatesCount() { return deviceCoordinates_.size(); } /** *
     * A flattened rank 3 int32 array with shape
     * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
     * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
     * of TPU devices per task, and the minor dimension corresponds to a position
     * in the TPU mesh topology. Each entry [task, device, axis] gives the
     * `axis`-th coordinate in the topology of a task/device pair.
     * 
* * repeated int32 device_coordinates = 4; */ public int getDeviceCoordinates(int index) { return deviceCoordinates_.get(index); } private int deviceCoordinatesMemoizedSerializedSize = -1; private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { getSerializedSize(); if (getMeshShapeList().size() > 0) { output.writeUInt32NoTag(10); output.writeUInt32NoTag(meshShapeMemoizedSerializedSize); } for (int i = 0; i < meshShape_.size(); i++) { output.writeInt32NoTag(meshShape_.get(i)); } if (numTasks_ != 0) { output.writeInt32(2, numTasks_); } if (numTpuDevicesPerTask_ != 0) { output.writeInt32(3, numTpuDevicesPerTask_); } if (getDeviceCoordinatesList().size() > 0) { output.writeUInt32NoTag(34); output.writeUInt32NoTag(deviceCoordinatesMemoizedSerializedSize); } for (int i = 0; i < deviceCoordinates_.size(); i++) { output.writeInt32NoTag(deviceCoordinates_.get(i)); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; { int dataSize = 0; for (int i = 0; i < meshShape_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(meshShape_.get(i)); } size += dataSize; if (!getMeshShapeList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } meshShapeMemoizedSerializedSize = dataSize; } if (numTasks_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(2, numTasks_); } if (numTpuDevicesPerTask_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(3, numTpuDevicesPerTask_); } { int dataSize = 0; for (int i = 0; i < deviceCoordinates_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(deviceCoordinates_.get(i)); } size += dataSize; if (!getDeviceCoordinatesList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } deviceCoordinatesMemoizedSerializedSize = dataSize; } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof tensorflow.tpu.Topology.TopologyProto)) { return super.equals(obj); } tensorflow.tpu.Topology.TopologyProto other = (tensorflow.tpu.Topology.TopologyProto) obj; boolean result = true; result = result && getMeshShapeList() .equals(other.getMeshShapeList()); result = result && (getNumTasks() == other.getNumTasks()); result = result && (getNumTpuDevicesPerTask() == other.getNumTpuDevicesPerTask()); result = result && getDeviceCoordinatesList() .equals(other.getDeviceCoordinatesList()); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (getMeshShapeCount() > 0) { hash = (37 * hash) + MESH_SHAPE_FIELD_NUMBER; hash = (53 * hash) + getMeshShapeList().hashCode(); } hash = (37 * hash) + NUM_TASKS_FIELD_NUMBER; hash = (53 * hash) + getNumTasks(); hash = (37 * hash) + NUM_TPU_DEVICES_PER_TASK_FIELD_NUMBER; hash = (53 * hash) + getNumTpuDevicesPerTask(); if (getDeviceCoordinatesCount() > 0) { hash = (37 * hash) + DEVICE_COORDINATES_FIELD_NUMBER; hash = (53 * hash) + getDeviceCoordinatesList().hashCode(); } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static tensorflow.tpu.Topology.TopologyProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.tpu.Topology.TopologyProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.tpu.Topology.TopologyProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.tpu.Topology.TopologyProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.tpu.Topology.TopologyProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static tensorflow.tpu.Topology.TopologyProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static tensorflow.tpu.Topology.TopologyProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.tpu.Topology.TopologyProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.tpu.Topology.TopologyProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static tensorflow.tpu.Topology.TopologyProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static tensorflow.tpu.Topology.TopologyProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static tensorflow.tpu.Topology.TopologyProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(tensorflow.tpu.Topology.TopologyProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Describes the geometry of a TPU mesh.
     * 
* * Protobuf type {@code tensorflow.tpu.TopologyProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.tpu.TopologyProto) tensorflow.tpu.Topology.TopologyProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return tensorflow.tpu.Topology.internal_static_tensorflow_tpu_TopologyProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return tensorflow.tpu.Topology.internal_static_tensorflow_tpu_TopologyProto_fieldAccessorTable .ensureFieldAccessorsInitialized( tensorflow.tpu.Topology.TopologyProto.class, tensorflow.tpu.Topology.TopologyProto.Builder.class); } // Construct using tensorflow.tpu.Topology.TopologyProto.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); meshShape_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); numTasks_ = 0; numTpuDevicesPerTask_ = 0; deviceCoordinates_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000008); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return tensorflow.tpu.Topology.internal_static_tensorflow_tpu_TopologyProto_descriptor; } @java.lang.Override public tensorflow.tpu.Topology.TopologyProto getDefaultInstanceForType() { return tensorflow.tpu.Topology.TopologyProto.getDefaultInstance(); } @java.lang.Override public tensorflow.tpu.Topology.TopologyProto build() { tensorflow.tpu.Topology.TopologyProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public tensorflow.tpu.Topology.TopologyProto buildPartial() { tensorflow.tpu.Topology.TopologyProto result = new tensorflow.tpu.Topology.TopologyProto(this); int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((bitField0_ & 0x00000001) == 0x00000001)) { meshShape_ = java.util.Collections.unmodifiableList(meshShape_); bitField0_ = (bitField0_ & ~0x00000001); } result.meshShape_ = meshShape_; result.numTasks_ = numTasks_; result.numTpuDevicesPerTask_ = numTpuDevicesPerTask_; if (((bitField0_ & 0x00000008) == 0x00000008)) { deviceCoordinates_ = java.util.Collections.unmodifiableList(deviceCoordinates_); bitField0_ = (bitField0_ & ~0x00000008); } result.deviceCoordinates_ = deviceCoordinates_; result.bitField0_ = to_bitField0_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return (Builder) super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof tensorflow.tpu.Topology.TopologyProto) { return mergeFrom((tensorflow.tpu.Topology.TopologyProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(tensorflow.tpu.Topology.TopologyProto other) { if (other == tensorflow.tpu.Topology.TopologyProto.getDefaultInstance()) return this; if (!other.meshShape_.isEmpty()) { if (meshShape_.isEmpty()) { meshShape_ = other.meshShape_; bitField0_ = (bitField0_ & ~0x00000001); } else { ensureMeshShapeIsMutable(); meshShape_.addAll(other.meshShape_); } onChanged(); } if (other.getNumTasks() != 0) { setNumTasks(other.getNumTasks()); } if (other.getNumTpuDevicesPerTask() != 0) { setNumTpuDevicesPerTask(other.getNumTpuDevicesPerTask()); } if (!other.deviceCoordinates_.isEmpty()) { if (deviceCoordinates_.isEmpty()) { deviceCoordinates_ = other.deviceCoordinates_; bitField0_ = (bitField0_ & ~0x00000008); } else { ensureDeviceCoordinatesIsMutable(); deviceCoordinates_.addAll(other.deviceCoordinates_); } onChanged(); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { tensorflow.tpu.Topology.TopologyProto parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (tensorflow.tpu.Topology.TopologyProto) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int bitField0_; private java.util.List meshShape_ = java.util.Collections.emptyList(); private void ensureMeshShapeIsMutable() { if (!((bitField0_ & 0x00000001) == 0x00000001)) { meshShape_ = new java.util.ArrayList(meshShape_); bitField0_ |= 0x00000001; } } /** *
       * The dimensions of the TPU topology, in cores. Typically, this is a 3D
       * topology [x, y, core], where the major dimensions correspond to TPU chips,
       * and the minor dimension describes the number of cores on a multicore chip.
       * 
* * repeated int32 mesh_shape = 1; */ public java.util.List getMeshShapeList() { return java.util.Collections.unmodifiableList(meshShape_); } /** *
       * The dimensions of the TPU topology, in cores. Typically, this is a 3D
       * topology [x, y, core], where the major dimensions correspond to TPU chips,
       * and the minor dimension describes the number of cores on a multicore chip.
       * 
* * repeated int32 mesh_shape = 1; */ public int getMeshShapeCount() { return meshShape_.size(); } /** *
       * The dimensions of the TPU topology, in cores. Typically, this is a 3D
       * topology [x, y, core], where the major dimensions correspond to TPU chips,
       * and the minor dimension describes the number of cores on a multicore chip.
       * 
* * repeated int32 mesh_shape = 1; */ public int getMeshShape(int index) { return meshShape_.get(index); } /** *
       * The dimensions of the TPU topology, in cores. Typically, this is a 3D
       * topology [x, y, core], where the major dimensions correspond to TPU chips,
       * and the minor dimension describes the number of cores on a multicore chip.
       * 
* * repeated int32 mesh_shape = 1; */ public Builder setMeshShape( int index, int value) { ensureMeshShapeIsMutable(); meshShape_.set(index, value); onChanged(); return this; } /** *
       * The dimensions of the TPU topology, in cores. Typically, this is a 3D
       * topology [x, y, core], where the major dimensions correspond to TPU chips,
       * and the minor dimension describes the number of cores on a multicore chip.
       * 
* * repeated int32 mesh_shape = 1; */ public Builder addMeshShape(int value) { ensureMeshShapeIsMutable(); meshShape_.add(value); onChanged(); return this; } /** *
       * The dimensions of the TPU topology, in cores. Typically, this is a 3D
       * topology [x, y, core], where the major dimensions correspond to TPU chips,
       * and the minor dimension describes the number of cores on a multicore chip.
       * 
* * repeated int32 mesh_shape = 1; */ public Builder addAllMeshShape( java.lang.Iterable values) { ensureMeshShapeIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, meshShape_); onChanged(); return this; } /** *
       * The dimensions of the TPU topology, in cores. Typically, this is a 3D
       * topology [x, y, core], where the major dimensions correspond to TPU chips,
       * and the minor dimension describes the number of cores on a multicore chip.
       * 
* * repeated int32 mesh_shape = 1; */ public Builder clearMeshShape() { meshShape_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } private int numTasks_ ; /** *
       * Number of TensorFlow tasks in the cluster.
       * 
* * int32 num_tasks = 2; */ public int getNumTasks() { return numTasks_; } /** *
       * Number of TensorFlow tasks in the cluster.
       * 
* * int32 num_tasks = 2; */ public Builder setNumTasks(int value) { numTasks_ = value; onChanged(); return this; } /** *
       * Number of TensorFlow tasks in the cluster.
       * 
* * int32 num_tasks = 2; */ public Builder clearNumTasks() { numTasks_ = 0; onChanged(); return this; } private int numTpuDevicesPerTask_ ; /** *
       * Number of TPU devices per task.
       * 
* * int32 num_tpu_devices_per_task = 3; */ public int getNumTpuDevicesPerTask() { return numTpuDevicesPerTask_; } /** *
       * Number of TPU devices per task.
       * 
* * int32 num_tpu_devices_per_task = 3; */ public Builder setNumTpuDevicesPerTask(int value) { numTpuDevicesPerTask_ = value; onChanged(); return this; } /** *
       * Number of TPU devices per task.
       * 
* * int32 num_tpu_devices_per_task = 3; */ public Builder clearNumTpuDevicesPerTask() { numTpuDevicesPerTask_ = 0; onChanged(); return this; } private java.util.List deviceCoordinates_ = java.util.Collections.emptyList(); private void ensureDeviceCoordinatesIsMutable() { if (!((bitField0_ & 0x00000008) == 0x00000008)) { deviceCoordinates_ = new java.util.ArrayList(deviceCoordinates_); bitField0_ |= 0x00000008; } } /** *
       * A flattened rank 3 int32 array with shape
       * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
       * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
       * of TPU devices per task, and the minor dimension corresponds to a position
       * in the TPU mesh topology. Each entry [task, device, axis] gives the
       * `axis`-th coordinate in the topology of a task/device pair.
       * 
* * repeated int32 device_coordinates = 4; */ public java.util.List getDeviceCoordinatesList() { return java.util.Collections.unmodifiableList(deviceCoordinates_); } /** *
       * A flattened rank 3 int32 array with shape
       * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
       * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
       * of TPU devices per task, and the minor dimension corresponds to a position
       * in the TPU mesh topology. Each entry [task, device, axis] gives the
       * `axis`-th coordinate in the topology of a task/device pair.
       * 
* * repeated int32 device_coordinates = 4; */ public int getDeviceCoordinatesCount() { return deviceCoordinates_.size(); } /** *
       * A flattened rank 3 int32 array with shape
       * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
       * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
       * of TPU devices per task, and the minor dimension corresponds to a position
       * in the TPU mesh topology. Each entry [task, device, axis] gives the
       * `axis`-th coordinate in the topology of a task/device pair.
       * 
* * repeated int32 device_coordinates = 4; */ public int getDeviceCoordinates(int index) { return deviceCoordinates_.get(index); } /** *
       * A flattened rank 3 int32 array with shape
       * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
       * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
       * of TPU devices per task, and the minor dimension corresponds to a position
       * in the TPU mesh topology. Each entry [task, device, axis] gives the
       * `axis`-th coordinate in the topology of a task/device pair.
       * 
* * repeated int32 device_coordinates = 4; */ public Builder setDeviceCoordinates( int index, int value) { ensureDeviceCoordinatesIsMutable(); deviceCoordinates_.set(index, value); onChanged(); return this; } /** *
       * A flattened rank 3 int32 array with shape
       * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
       * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
       * of TPU devices per task, and the minor dimension corresponds to a position
       * in the TPU mesh topology. Each entry [task, device, axis] gives the
       * `axis`-th coordinate in the topology of a task/device pair.
       * 
* * repeated int32 device_coordinates = 4; */ public Builder addDeviceCoordinates(int value) { ensureDeviceCoordinatesIsMutable(); deviceCoordinates_.add(value); onChanged(); return this; } /** *
       * A flattened rank 3 int32 array with shape
       * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
       * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
       * of TPU devices per task, and the minor dimension corresponds to a position
       * in the TPU mesh topology. Each entry [task, device, axis] gives the
       * `axis`-th coordinate in the topology of a task/device pair.
       * 
* * repeated int32 device_coordinates = 4; */ public Builder addAllDeviceCoordinates( java.lang.Iterable values) { ensureDeviceCoordinatesIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, deviceCoordinates_); onChanged(); return this; } /** *
       * A flattened rank 3 int32 array with shape
       * [num_tasks, num_tpu_devices_per_task, len(mesh_shape)].
       * `tasks` is the number of tasks in the TPU cluster, `devices` is the number
       * of TPU devices per task, and the minor dimension corresponds to a position
       * in the TPU mesh topology. Each entry [task, device, axis] gives the
       * `axis`-th coordinate in the topology of a task/device pair.
       * 
* * repeated int32 device_coordinates = 4; */ public Builder clearDeviceCoordinates() { deviceCoordinates_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.tpu.TopologyProto) } // @@protoc_insertion_point(class_scope:tensorflow.tpu.TopologyProto) private static final tensorflow.tpu.Topology.TopologyProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new tensorflow.tpu.Topology.TopologyProto(); } public static tensorflow.tpu.Topology.TopologyProto getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TopologyProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new TopologyProto(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public tensorflow.tpu.Topology.TopologyProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_tpu_TopologyProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_tpu_TopologyProto_fieldAccessorTable; public static com.google.protobuf.Descriptors.FileDescriptor getDescriptor() { return descriptor; } private static com.google.protobuf.Descriptors.FileDescriptor descriptor; static { java.lang.String[] descriptorData = { "\n+tensorflow/contrib/tpu/proto/topology." + "proto\022\016tensorflow.tpu\"t\n\rTopologyProto\022\022" + "\n\nmesh_shape\030\001 \003(\005\022\021\n\tnum_tasks\030\002 \001(\005\022 \n" + "\030num_tpu_devices_per_task\030\003 \001(\005\022\032\n\022devic" + "e_coordinates\030\004 \003(\005B\003\370\001\001b\006proto3" }; com.google.protobuf.Descriptors.FileDescriptor.InternalDescriptorAssigner assigner = new com.google.protobuf.Descriptors.FileDescriptor. InternalDescriptorAssigner() { public com.google.protobuf.ExtensionRegistry assignDescriptors( com.google.protobuf.Descriptors.FileDescriptor root) { descriptor = root; return null; } }; com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, new com.google.protobuf.Descriptors.FileDescriptor[] { }, assigner); internal_static_tensorflow_tpu_TopologyProto_descriptor = getDescriptor().getMessageTypes().get(0); internal_static_tensorflow_tpu_TopologyProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_tpu_TopologyProto_descriptor, new java.lang.String[] { "MeshShape", "NumTasks", "NumTpuDevicesPerTask", "DeviceCoordinates", }); } // @@protoc_insertion_point(outer_class_scope) }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy