za.co.absa.cobrix.spark.cobol.examples.CobolSparkExample2.scala Maven / Gradle / Ivy
/*
* Copyright 2018-2019 ABSA Group Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package za.co.absa.cobrix.spark.cobol.examples
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.StringType
import org.apache.log4j.{Level, Logger}
// This is an example Spark Job that uses COBOL data source.
// IMPORTANT! To run this locally change the scope of all Scala and Spark libraries from 'provided' to 'compile' in pom.xml
// But revert it to 'provided' to create an uber jar for running on a cluster
object CobolSparkExample2 {
def main(args: Array[String]): Unit = {
// Making the logs less verbose for this example
Logger.getLogger("org").setLevel(Level.WARN)
Logger.getLogger("akka").setLevel(Level.WARN)
val sparkBuilder = SparkSession.builder().appName("Cobol source reader example 2")
val spark = sparkBuilder
.master("local[*]")
.getOrCreate()
val copybook =
""" 01 COMPANY-DETAILS.
| 05 SEGMENT-ID PIC X(5).
| 05 COMPANY-ID PIC X(10).
| 05 COMPANY.
| 10 NAME PIC X(15).
| 10 ADDRESS PIC X(25).
| 10 TAXPAYER.
| 15 TAXPAYER-TYPE PIC X(1).
| 15 TAXPAYER-STR PIC X(8).
| 15 TAXPAYER-NUM REDEFINES TAXPAYER-STR
| PIC 9(8) COMP.
| 05 CONTACT REDEFINES COMPANY.
| 10 PHONE-NUMBER PIC X(17).
| 10 CONTACT-PERSON PIC X(28).
|""".stripMargin
// This is an example read a multisegment variable length file from a mainframe.
val df = spark
.read
.format("cobol")
.option("copybook_contents", copybook)
.option("schema_retention_policy", "collapse_root") // Collapses the root group returning it's field on the top level of the schema
.option("is_record_sequence", "true") // Specifies that the input file is a sequence of records having RDW headers
.load("examples/example_data/multisegment_data/COMP.DETAILS.SEP30.DATA.dat")
import spark.implicits._
df.printSchema
//println(df.count)
df.orderBy($"COMPANY_ID").show(10, false)
val dfCompanies = df.filter($"SEGMENT_ID"==="C")
.select($"COMPANY_ID", $"COMPANY.NAME".as("COMPANY_NAME"), $"COMPANY.ADDRESS",
when($"COMPANY.TAXPAYER.TAXPAYER_TYPE" === "A", $"COMPANY.TAXPAYER.TAXPAYER_STR")
.otherwise($"COMPANY.TAXPAYER.TAXPAYER_NUM").cast(StringType).as("TAXPAYER"))
dfCompanies.printSchema
//println(df.count)
dfCompanies.show(50, truncate = false)
val dfContacts = df.filter($"SEGMENT_ID"==="P")
.select($"COMPANY_ID", $"CONTACT.CONTACT_PERSON", $"CONTACT.PHONE_NUMBER")
dfContacts.printSchema
//println(df.count)
dfContacts.show(50, truncate = false)
val dfJoined = dfCompanies.join(dfContacts, "COMPANY_ID")
dfJoined.printSchema
//println(df.count)
dfJoined.orderBy($"COMPANY_ID").show(50, truncate = false)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy