Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2018 ABSA Group Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package za.co.absa.enceladus.conformance.interpreter
import org.apache.spark.sql.execution.command.ExplainCommand
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
import org.apache.spark.storage.StorageLevel
import org.slf4j.LoggerFactory
import za.co.absa.atum.AtumImplicits._
import za.co.absa.enceladus.conformance.config.ConformanceConfigParser
import za.co.absa.enceladus.conformance.datasource.PartitioningUtils
import za.co.absa.enceladus.conformance.interpreter.rules._
import za.co.absa.enceladus.conformance.interpreter.rules.custom.CustomConformanceRule
import za.co.absa.enceladus.dao.MenasDAO
import za.co.absa.enceladus.model.conformanceRule.{ConformanceRule, _}
import za.co.absa.enceladus.model.{Dataset => ConfDataset}
import za.co.absa.enceladus.utils.error.ErrorMessage
import za.co.absa.enceladus.utils.explode.ExplosionContext
import za.co.absa.enceladus.utils.fs.FileSystemVersionUtils
import za.co.absa.enceladus.utils.general.Algorithms
import za.co.absa.enceladus.utils.schema.SchemaUtils
import za.co.absa.enceladus.utils.udf.UDFLibrary
object DynamicInterpreter {
private val log = LoggerFactory.getLogger(this.getClass)
/**
* Interpret conformance rules defined in a dataset.
*
* @param conformance The dataset object - this represents a data conformance workflow.
* @param inputDf The dataset to be conformed.
* @param jobShortName A job name used for checkpoints.
* @return The conformed DataFrame.
*
*/
def interpret[T](conformance: ConfDataset, inputDf: Dataset[Row], jobShortName: String = "Conformance")
(implicit spark: SparkSession, dao: MenasDAO,
progArgs: ConformanceConfigParser[T], featureSwitches: FeatureSwitches): DataFrame = {
implicit val interpreterContext: InterpreterContext = InterpreterContext(inputDf.schema, conformance,
featureSwitches, jobShortName, spark, dao, InterpreterContextArgs.fromConformanceConfig(progArgs))
applyCheckpoint(inputDf, "Start")
val conformedDf = applyConformanceRules(ensureErrorColumnExists(inputDf))
applyCheckpoint(conformedDf, "End")
logExecutionPlan(conformedDf)
conformedDf
}
private def findOriginalColumnsModificationRules(steps: List[ConformanceRule],
schema: StructType): Seq[ConformanceRule] = {
steps.filter(rule => SchemaUtils.fieldExists(rule.outputColumn, schema))
}
/**
* Applies conformance rules applying a workaround for the Catalyst optimizer bug.
*
* @param inputDf The dataset to be conformed.
* @return The conformed DataFrame.
*/
private def applyConformanceRules(inputDf: DataFrame)
(implicit ictx: InterpreterContext): DataFrame = {
implicit val spark: SparkSession = ictx.spark
implicit val dao: MenasDAO = ictx.dao
implicit val progArgs: InterpreterContextArgs = ictx.progArgs
implicit val udfLib: UDFLibrary = new UDFLibrary
implicit val explosionState: ExplosionState = new ExplosionState()
val steps = getConformanceSteps
checkMutabilityNotViolated(inputDf.schema, steps)
val interpreters = getInterpreters(steps, inputDf.schema)
val optimizerTimeTracker = new OptimizerTimeTracker(inputDf, ictx.featureSwitches.catalystWorkaroundEnabled)
val dfInputWithIdForWorkaround = optimizerTimeTracker.getWorkaroundDataframe
// Fold left on rules
var rulesApplied = 0
val conformedDf = interpreters.foldLeft(dfInputWithIdForWorkaround)({
case (df, interpreter) =>
val explosionStateCopy = new ExplosionState(explosionState.explodeContext)
val ruleAppliedDf = interpreter.conform(df)(spark, explosionStateCopy, dao, progArgs)
val conformedDf = if (explosionState.isNoExplosionsApplied &&
optimizerTimeTracker.isCatalystWorkaroundRequired(ruleAppliedDf, rulesApplied)) {
// Apply a workaround BEFORE applying the rule so that the execution plan generation still runs fast
val workAroundDf = interpreter.conform(optimizerTimeTracker.applyCatalystWorkaround(df))
optimizerTimeTracker.recordExecutionPlanOptimizationTime(workAroundDf)
workAroundDf
} else {
explosionState.explodeContext = explosionStateCopy.explodeContext
ruleAppliedDf
}
rulesApplied += 1
interpreter.conformanceRule match {
case Some(rule) => applyRuleCheckpoint(rule, conformedDf, progArgs.persistStorageLevel, explosionState.explodeContext)
case None => conformedDf
}
})
optimizerTimeTracker.cleanupWorkaroundDf(conformedDf)
}
private def checkMutabilityNotViolated(schema: StructType, steps: List[ConformanceRule])
(implicit ictx: InterpreterContext): Unit = {
val rulesInViolation = findOriginalColumnsModificationRules(steps, schema)
if (rulesInViolation.nonEmpty) {
val violationsString = rulesInViolation.map(rule =>
s"Rule number ${rule.order} - ${rule.getClass.getSimpleName}"
).mkString("\n")
if (ictx.featureSwitches.allowOriginalColumnsMutability) {
log.warn(
s"""Mutability of original Data Allowed and there are some rules in violation of immutability pattern.
|These are:
|$violationsString""".stripMargin)
} else {
throw new IllegalStateException(
s"""There are some rules in violation of immutability pattern. These are:
|$violationsString""".stripMargin)
}
}
}
/**
* Transforms a list of conformance rules to a list of conformance rule interpreters.
* For most conformance rules there is only one interpreter to apply. But mapping rule
* has several strategies. Optimizer chooses which strategy to use and provides an
* interpreter for each strategy.
*
* @param rules A list of conformance rules.
* @param schema A schema of a DataFrame to be conformed.
* @return A list of conformance rule interpreters.
*/
def getInterpreters(rules: List[ConformanceRule], schema: StructType)
(implicit ictx: InterpreterContext): List[RuleInterpreter] = {
val groupedRules = groupMappingRules(rules, schema)
getOptimizedInterpreters(groupedRules, schema)
}
/**
* Optimizes a list of groups of conformance rules and returns a list of interpreters as the result.
*
* The input conformance rules are expected to be grouped. Only mapping rules are grouped. Each group of
* mapping rules has the output field in the same array. This makes it possible to apply an optimization of
* exploding the array only once. The optimization is done by inserting `ArrayExplodeInterpreter` and
* `ArrayCollapseInterpreter` for each group of mapping rules.
*
* @param ruleGroups Conformance rules grouped by output field being in the same array.
* @param schema A schema of a DataFrame to be conformed.
* @return A list of conformance rules interpreters.
*/
private def getOptimizedInterpreters(ruleGroups: List[List[ConformanceRule]],
schema: StructType)
(implicit ictx: InterpreterContext): List[RuleInterpreter] = {
ruleGroups.flatMap(rules => {
val interpreters = rules.map(rule => getInterpreter(rule))
if (isGroupExplosionUsable(rules) &&
ictx.featureSwitches.experimentalMappingRuleEnabled) {
// Inserting an explosion and a collapse between a group of mapping rules operating on a common array
val optArray = SchemaUtils.getDeepestArrayPath(schema, rules.head.outputColumn)
optArray match {
case Some(arrayColumn) =>
new ArrayExplodeInterpreter(arrayColumn) :: (interpreters :+ new ArrayCollapseInterpreter())
case None =>
throw new IllegalStateException("Unable to find a common array between fields: " +
rules.map(_.outputColumn).mkString(", "))
}
} else {
interpreters
}
})
}
/**
* Returns an interpreter for a conformance rule. Most conformance rules correspond to one interpreter.
* The exception is the mapping rule for which there are several interpreters based on the strategy used.
*
* @param rule A conformance rule.
* @return A conformance rules interpreter.
*/
private def getInterpreter(rule: ConformanceRule)
(implicit ictx: InterpreterContext): RuleInterpreter = {
rule match {
case r: DropConformanceRule => DropRuleInterpreter(r)
case r: ConcatenationConformanceRule => ConcatenationRuleInterpreter(r)
case r: LiteralConformanceRule => LiteralRuleInterpreter(r)
case r: SingleColumnConformanceRule => SingleColumnRuleInterpreter(r)
case r: SparkSessionConfConformanceRule => SparkSessionConfRuleInterpreter(r)
case r: UppercaseConformanceRule => UppercaseRuleInterpreter(r)
case r: CastingConformanceRule => CastingRuleInterpreter(r)
case r: NegationConformanceRule => NegationRuleInterpreter(r)
case r: MappingConformanceRule => getMappingRuleInterpreter(r)
case r: FillNullsConformanceRule => FillNullsRuleInterpreter(r)
case r: CoalesceConformanceRule => CoalesceRuleInterpreter(r)
case r: CustomConformanceRule => r.getInterpreter()
case r => throw new IllegalStateException(s"Unrecognized rule class: ${r.getClass.getName}")
}
}
/**
* Returns an interpreter for a mapping rule based on which strategy is applicable.
*
* @param rule A conformance rule.
* @return A mapping rule interpreter.
*/
private def getMappingRuleInterpreter(rule: MappingConformanceRule)
(implicit ictx: InterpreterContext): RuleInterpreter = {
if (canMappingRuleBroadcast(rule)) {
log.info("Broadcast strategy for mapping rules is used")
MappingRuleInterpreterBroadcast(rule, ictx.conformance)
} else {
if (ictx.featureSwitches.experimentalMappingRuleEnabled) {
log.info("Group explode strategy for mapping rules used")
MappingRuleInterpreterGroupExplode(rule, ictx.conformance)
} else {
log.info("Explode strategy for mapping rules used")
MappingRuleInterpreter(rule, ictx.conformance)
}
}
}
/**
* An explosion is needed for a group of mapping rules if the number of mapping rules inside the group
* for which broadcasting strategy is not applicable is bigger than 1.
*
* @param rules A list of conformance rules grouped by output field being in the same array
* @return true if a group explosion optimization can be used
*/
private def isGroupExplosionUsable(rules: List[ConformanceRule])
(implicit ictx: InterpreterContext): Boolean = {
val eligibleRulesCount = rules.map {
case rule: MappingConformanceRule => if (canMappingRuleBroadcast(rule)) 0 else 1
case _ => 0
}.sum
eligibleRulesCount > 1
}
/**
* Returns true if broadcasting strategy is applicable for the specified mapping rule.
*
* @param rule A mapping conformance rule.
* @return true if the broadcasting mapping rule strategy can be used.
*/
private def canMappingRuleBroadcast(rule: MappingConformanceRule)
(implicit ictx: InterpreterContext): Boolean = {
ictx.featureSwitches.broadcastStrategyMode match {
case Always => true
case Never => false
case Auto => isMappingTableSmallEnough(rule)
}
}
/**
* Returns true if the mapping table size is small enough for the broadcasting strategy to be used.
*
* @param rule A mapping conformance rule.
* @return true if the mapping table size is small enough.
*/
private def isMappingTableSmallEnough(rule: MappingConformanceRule)
(implicit ictx: InterpreterContext): Boolean = {
val maxBroadcastSizeMb = ictx.featureSwitches.broadcastMaxSizeMb
val mappingTableSize = getMappingTableSizeMb(rule)
log.info(s"Mapping table (${rule.mappingTable}) size = $mappingTableSize MB (threshold = $maxBroadcastSizeMb MB)")
mappingTableSize <= maxBroadcastSizeMb
}
/**
* Returns the size of the mapping table in megabytes.
*
* @param rule A mapping conformance rule.
* @return The size of the mapping table in megabytes.
*/
private def getMappingTableSizeMb(rule: MappingConformanceRule)
(implicit ictx: InterpreterContext): Int = {
val fsUtils = new FileSystemVersionUtils(ictx.spark.sparkContext.hadoopConfiguration)
val mappingTableDef = ictx.dao.getMappingTable(rule.mappingTable, rule.mappingTableVersion)
val mappingTablePath = PartitioningUtils.getPartitionedPathName(mappingTableDef.hdfsPath,
ictx.progArgs.reportDate)
val mappingTableSize = fsUtils.getDirectorySizeNoHidden(mappingTablePath)
(mappingTableSize / (1024 * 1024)).toInt
}
/**
* Gets the list of conformance rules from the context
*
* @return A list of conformance rules
*/
def getConformanceSteps(implicit ictx: InterpreterContext): List[ConformanceRule] = {
ictx.conformance.conformance.sortBy(_.order)
}
/**
* Applies a control framework checkpoint given a stage of the conformance
*
* @param df Dataframe to apply the checkpoint on
* @param jobStage Specifies a job stage that will be added to the checkpoint name
*/
private def applyCheckpoint(df: Dataset[Row], jobStage: String)(implicit ictx: InterpreterContext): Unit = {
if (ictx.featureSwitches.controlFrameworkEnabled) {
df.setCheckpoint(s"${ictx.jobShortName} - $jobStage")
}
}
/**
* Create a new Control Framework checkpoint for a specified Conformance Rule (after the rule is applied)
*
* @param rule The conformance rule
* @param df Dataframe to apply the checkpoint on
* @param persistStorageLevel A storage level for caching/persisting the df, if set.
* @param explodeContext An exploded context to be taken into account if a checkpoint is created for an exploded
* dataframe
* @return A cached dataframe if a checkpoint is calculated, otherwise returns the original dataframe
*/
private def applyRuleCheckpoint(rule: ConformanceRule,
df: Dataset[Row],
persistStorageLevel: Option[StorageLevel],
explodeContext: ExplosionContext)
(implicit ictx: InterpreterContext): Dataset[Row] = {
if (ictx.featureSwitches.controlFrameworkEnabled && rule.controlCheckpoint) {
val explodeFilter = explodeContext.getControlFrameworkFilter
// Cache the data first since Atum will execute an action for each control metric
val cachedDf = persistStorageLevel match {
case Some(level) => df.persist(level)
case None => df.cache
}
cachedDf.filter(explodeFilter)
.setCheckpoint(s"${ictx.jobShortName} (${rule.order}) - ${rule.outputColumn}")
cachedDf
}
else {
df
}
}
private def logExecutionPlan(df: DataFrame)(implicit spark: SparkSession): Unit = {
// Need to check this explicitly since the execution plan generation can take significant amount of time
if (log.isDebugEnabled) {
val explain = ExplainCommand(df.queryExecution.logical, extended = true)
spark.sessionState.executePlan(explain).executedPlan.executeCollect().foreach {
r => log.debug("Output Dataset plan: \n" + r.getString(0))
}
}
}
/**
* Ensures the existence of the error column
*
* @param inputDf the input data frame
* @return A dataframe that has an error column
*/
private def ensureErrorColumnExists(inputDf: Dataset[Row]): DataFrame = {
if (inputDf.columns.contains(ErrorMessage.errorColumnName)) {
inputDf
} else {
inputDf.withColumn(ErrorMessage.errorColumnName, typedLit(List[ErrorMessage]()))
}
}
/**
* Groups mapping rules if their output columns are inside the same array
*
* @param rules a list of conformance rules
* @param schema a schema of a dataset
* @return The list of lists of conformance rule groups
*/
private def groupMappingRules(rules: List[ConformanceRule], schema: StructType): List[List[ConformanceRule]] = {
Algorithms.stableGroupByOption[ConformanceRule, String](rules, {
case m: MappingConformanceRule => SchemaUtils.getDeepestArrayPath(schema, m.outputColumn)
case _ => None
}).map(_.toList).toList
}
}