za.co.absa.enceladus.conformance.interpreter.rules.CastingRuleInterpreter.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 ABSA Group Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package za.co.absa.enceladus.conformance.interpreter.rules
import org.apache.spark.sql.catalyst.parser.CatalystSqlParser
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.{Dataset, Row, SparkSession}
import za.co.absa.spark.hats.Extensions._
import za.co.absa.enceladus.conformance.interpreter.{ExplosionState, InterpreterContextArgs, RuleValidators}
import za.co.absa.enceladus.dao.EnceladusDAO
import za.co.absa.enceladus.model.conformanceRule.{CastingConformanceRule, ConformanceRule}
import za.co.absa.enceladus.utils.udf.ConformanceUDFNames
import za.co.absa.spark.commons.implicits.DataTypeImplicits.DataTypeEnhancements
import za.co.absa.spark.commons.implicits.StructTypeImplicits.StructTypeEnhancements
import za.co.absa.spark.hats.transformations.NestedArrayTransformations
case class CastingRuleInterpreter(rule: CastingConformanceRule) extends RuleInterpreter {
final val ruleName = "Casting rule"
override def conformanceRule: Option[ConformanceRule] = Some(rule)
def conform(df: Dataset[Row])
(implicit spark: SparkSession, explosionState: ExplosionState, dao: EnceladusDAO,
progArgs: InterpreterContextArgs): Dataset[Row] = {
// Validate the rule parameters
RuleValidators.validateInputField(progArgs.datasetName, ruleName, df.schema, rule.inputColumn)
RuleValidators.validateOutputField(progArgs.datasetName, ruleName, df.schema, rule.outputColumn)
RuleValidators.validateSameParent(progArgs.datasetName, ruleName, rule.inputColumn, rule.outputColumn)
df.schema.getFieldType(rule.inputColumn)
.foreach(dt => RuleValidators.validateTypeCompatibility(ruleName, rule.inputColumn, dt, rule.outputDataType))
val sourceDataType = df.schema.getFieldType(rule.inputColumn).get
val targetDataType = CatalystSqlParser.parseDataType(rule.outputDataType)
if (sourceDataType.doesCastAlwaysSucceed(targetDataType)) {
// Casting to string does not generate errors
df.nestedMapColumn(rule.inputColumn, rule.outputColumn, c =>
c.cast(rule.outputDataType)
)
} else {
NestedArrayTransformations.nestedWithColumnAndErrorMap(df, rule.inputColumn, rule.outputColumn, "errCol",
c => {
c.cast(rule.outputDataType)
}, c => {
when(c.isNotNull.and(c.cast(rule.outputDataType).isNull),
call_udf(ConformanceUDFNames.confCastErr, lit(rule.outputColumn), c.cast(StringType)))
.otherwise(null) // scalastyle:ignore null
})
}
}
}