Download JAR files tagged by classify with all dependencies
blunder from group net.sf.blunder (version 0.2.0)
Blunder is an automated tool for analyzing chained exceptions in Java. It's usefull for classify,
generate a customized error message and a list for possible solutions.
The aim of this project is to provide a tool to identify different error contexts, analyze them
and assemble a customized response to an application end-user or another application.
Artifact blunder
Group net.sf.blunder
Version 0.2.0
Last update 02. August 2009
Organization Blunder
URL http://blunder.sf.net/
License GPL Licence Version 3
Dependencies amount 17
Dependencies antlr, asm, asm-attrs, cglib, commons-collections, commons-dbcp, commons-lang, commons-logging, commons-pool, dom4j, jta, log4j, ehcache, opencsv, ognl, hibernate, spring,
There are maybe transitive dependencies!
Group net.sf.blunder
Version 0.2.0
Last update 02. August 2009
Organization Blunder
URL http://blunder.sf.net/
License GPL Licence Version 3
Dependencies amount 17
Dependencies antlr, asm, asm-attrs, cglib, commons-collections, commons-dbcp, commons-lang, commons-logging, commons-pool, dom4j, jta, log4j, ehcache, opencsv, ognl, hibernate, spring,
There are maybe transitive dependencies!
mrglvq from group de.cit-ec.ml (version 0.1.0)
This project contains a Java implementation of median relational generalized learning vector
quantization as proposed by Nebel, Hammer, Frohberg, and Villmann
(2015, doi:10.1016/j.neucom.2014.12.096). Given a matrix of pairwise distances D and a
vector of labels Y it identifies prototypical data points (i.e. rows of D) which help
to classify the data set using a simple nearest neighbor rule. In particular, the algorithm
optimizes the generalized learning vector quantization cost function (Sato and Yamada, 1995)
via an expectation maximization scheme where in each iteration one prototype 'jumps' to
another data point in order to improve the cost function. If the cost function can not be
improved anymore for any of the data points, the algorithm terminates.
Artifact mrglvq
Group de.cit-ec.ml
Version 0.1.0
Last update 27. January 2018
Organization not specified
URL https://gitlab.ub.uni-bielefeld.de/bpaassen/median_relational_glvq
License The GNU General Public License, Version 3
Dependencies amount 1
Dependencies rng,
There are maybe transitive dependencies!
Group de.cit-ec.ml
Version 0.1.0
Last update 27. January 2018
Organization not specified
URL https://gitlab.ub.uni-bielefeld.de/bpaassen/median_relational_glvq
License The GNU General Public License, Version 3
Dependencies amount 1
Dependencies rng,
There are maybe transitive dependencies!
userClassifier from group nz.ac.waikato.cms.weka (version 1.0.3)
Interactively classify through visual means. You are Presented with a scatter graph of the data against two user selectable attributes, as well as a view of the decision tree. You can create binary splits by creating polygons around data plotted on the scatter graph, as well as by allowing another classifier to take over at points in the decision tree should you see fit.
For more information see:
Malcolm Ware, Eibe Frank, Geoffrey Holmes, Mark Hall, Ian H. Witten (2001). Interactive machine learning: letting users build classifiers. Int. J. Hum.-Comput. Stud. 55(3):281-292.
Group: nz.ac.waikato.cms.weka Artifact: userClassifier
Show all versions Show documentation Show source
Show all versions Show documentation Show source
2 downloads
Artifact userClassifier
Group nz.ac.waikato.cms.weka
Version 1.0.3
Last update 25. April 2014
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/userClassifier
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.3
Last update 25. April 2014
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/userClassifier
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
oneClassClassifier from group nz.ac.waikato.cms.weka (version 1.0.4)
Performs one-class classification on a dataset.
Classifier reduces the class being classified to just a single class, and learns the datawithout using any information from other classes. The testing stage will classify as 'target'or 'outlier' - so in order to calculate the outlier pass rate the dataset must contain informationfrom more than one class.
Also, the output varies depending on whether the label 'outlier' exists in the instances usedto build the classifier. If so, then 'outlier' will be predicted, if not, then the label willbe considered missing when the prediction does not favour the target class. The 'outlier' classwill not be used to build the model if there are instances of this class in the dataset. It cansimply be used as a flag, you do not need to relabel any classes.
For more information, see:
Kathryn Hempstalk, Eibe Frank, Ian H. Witten: One-Class Classification by Combining Density and Class Probability Estimation. In: Proceedings of the 12th European Conference on Principles and Practice of Knowledge Discovery in Databases and 19th European Conference on Machine Learning, ECMLPKDD2008, Berlin, 505--519, 2008.
Group: nz.ac.waikato.cms.weka Artifact: oneClassClassifier
Show all versions Show documentation Show source
Show all versions Show documentation Show source
3 downloads
Artifact oneClassClassifier
Group nz.ac.waikato.cms.weka
Version 1.0.4
Last update 14. May 2013
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/oneClassClassifier
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.4
Last update 14. May 2013
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/oneClassClassifier
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
rng from group de.cit-ec.ml (version 1.0.0)
This is an implementation of the Neural Gas algorithm on
distance data (Relational Neural Gas) for unsupervised clustering.
We recommend that you use the functions provided by the RelationalNeuralGas
class for your purposes. All other classes and functions are utilities which
are used by this central class. In particular, you can use RelationalNeuralGas.train()
to obtain a RNGModel (i.e. a clustering of your data), and subsequently
you can use RelationalNeuralGas.getAssignments() to obtain the resulting
cluster assignments, and RelationalNeuralGas.classify() to cluster new points
which are not part of the training data set.
The underlying scientific work is summarized nicely in the dissertation
"Topographic Mapping of Dissimilarity Datasets" by Alexander Hasenfuss
(2009).
The basic properties of an Relational Neural Gas algorithm are the following:
1.) It is relational: The data is represented only in terms of a pairwise
distance matrix.
2.) It is a clustering method: The algorithm provides a clustering model,
that is: After calculation,
each data point should be assigned to a cluster (for this package here we
only consider hard clustering, that is: each data point is assigned to
exactly one cluster).
3.) It is a vector quantization method: Each cluster corresponds to a
prototype, which is in the center of the
cluster and data points are assigned to the cluster if and only if they are
closest to this particular prototype.
4.) It is rank-based: The updates of the prototypes depend only on
the distance ranking, not on the absolute value of the distances.
Artifact rng
Group de.cit-ec.ml
Version 1.0.0
Last update 26. January 2018
Organization not specified
URL https://gitlab.ub.uni-bielefeld.de/bpaassen/relational_neural_gas
License The GNU General Public License, Version 3
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
Group de.cit-ec.ml
Version 1.0.0
Last update 26. January 2018
Organization not specified
URL https://gitlab.ub.uni-bielefeld.de/bpaassen/relational_neural_gas
License The GNU General Public License, Version 3
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
Page 2 from 2 (items total 15)