Download JAR files tagged by classpath with all dependencies
spring-maven-plugin from group org.kuali.maven.plugins (version 3.1.0)
This plugin provides integration between Spring and Maven.
Plugin goals support loading an arbitrary Spring context XML file as part of the Maven build lifecycle.
The XML file can be on the local file system or be accessible via any URL Spring's resource loading mechanism can understand.
Spring's "classpath:context.xml" style notation is supported.
From version 2.0.0 on, annotated Java classes can also be used to load a Spring context.
The full set of Maven properties are injected into the Spring context (both XML and annotation style) as a bean named "mavenProperties".
Maven properties are also registered as a top level PropertySource so that Spring's placeholder resolution framework automatically considers them.
See Project Reports -> Plugin Documentation for details on plugin goals.
Group: org.kuali.maven.plugins Artifact: spring-maven-plugin
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact spring-maven-plugin
Group org.kuali.maven.plugins
Version 3.1.0
Last update 12. March 2014
Organization not specified
URL http://${kuali.site.hostname}/maven/plugins/${project.artifactId}/${project.version}
License not specified
Dependencies amount 2
Dependencies kuali-util, kuali-maven,
There are maybe transitive dependencies!
Group org.kuali.maven.plugins
Version 3.1.0
Last update 12. March 2014
Organization not specified
URL http://${kuali.site.hostname}/maven/plugins/${project.artifactId}/${project.version}
License not specified
Dependencies amount 2
Dependencies kuali-util, kuali-maven,
There are maybe transitive dependencies!
xapi-jre-reflect from group net.wetheinter (version 0.3)
This module contains a classpath scanner, and bytecode reader.
It is useful in any java runtime environment, and allows java code to
parse bytecode into a meta structure of classes, annotations, methods and fields.
This meta structure is used throughout xapi to allow us to extend java structures
in a cross-platform compliant way (exposing services and service objects so
you can hack support for whatever runtime you need).
It is especially useful for fast runtime injection, and as an extensible
structure during codegen (which exposes mutable interfaces for our meta structure)
Artifact xapi-jre-reflect
Group net.wetheinter
Version 0.3
Last update 13. April 2013
Organization not specified
URL WeTheInter.net
License not specified
Dependencies amount 1
Dependencies xapi-core-inject,
There are maybe transitive dependencies!
Group net.wetheinter
Version 0.3
Last update 13. April 2013
Organization not specified
URL WeTheInter.net
License not specified
Dependencies amount 1
Dependencies xapi-core-inject,
There are maybe transitive dependencies!
weblab-client from group org.ow2.weblab.components (version 0.1)
This library aims to provide a central access point to the services exposed on the ESB
without forcing each part of the system to know the actual location of the ESB and the names
of the exposed endpoints.
For this sake it allows to map service URI (ie referring to service in webLab taxonomy)
to the actual exposed URL on the ESB within the context of a specific project. The library
and the configuration should be added in portal lib in order to be central and available to
any portlets.
The mapping is done in a simple spring config file "webLabClient.xml" which must be accessible
in JAVA classpath.
Artifact weblab-client
Group org.ow2.weblab.components
Version 0.1
Last update 11. July 2012
Organization not specified
URL Not specified
License not specified
Dependencies amount 1
Dependencies spring-beans,
There are maybe transitive dependencies!
Group org.ow2.weblab.components
Version 0.1
Last update 11. July 2012
Organization not specified
URL Not specified
License not specified
Dependencies amount 1
Dependencies spring-beans,
There are maybe transitive dependencies!
jetty-conf-maven-plugin from group net.uvavru.maven.plugin (version 1.0)
Jetty context XML configuration plugin generator helper.
This plugin helps you to generate your Context XML file with a dynamic content such as:
* classpath entries
* web app resources
* maven properties
Plugin needs a template Jetty context XML file where the dynamic content is injected.
Injection of dynamic content is supported as:
* altering the DOM with new values
* with enabled filtering dynamic values can be replaced as properties (see bellow)
Filtering of the template file is supported.
Basically it means you can include content from your maven properties in your context XML file.
If desired plugin sets two maven properties with the dynamic content:
* jetty.conf-plugin.classpath
* jetty.conf-plugin.webapp
These properties might be used for filtering as well.
Plugin resolves project dependency artifacts.
These artifacts are transformed into webapp resources and classpath entries.
Works with multi-module projects.
Works in Eclipse with enabled m2e.
0 downloads
Artifact jetty-conf-maven-plugin
Group net.uvavru.maven.plugin
Version 1.0
Last update 31. May 2012
Organization not specified
URL https://github.com/stepanv/jetty-conf-maven-plugin
License The Apache Software License, Version 2.0
Dependencies amount 2
Dependencies maven-core, maven-filtering,
There are maybe transitive dependencies!
Group net.uvavru.maven.plugin
Version 1.0
Last update 31. May 2012
Organization not specified
URL https://github.com/stepanv/jetty-conf-maven-plugin
License The Apache Software License, Version 2.0
Dependencies amount 2
Dependencies maven-core, maven-filtering,
There are maybe transitive dependencies!
xapi-gwt-api from group net.wetheinter (version 0.5)
All Gwt jre emulation code goes in this module,
as well as any gwt-compiler overrides.
xapi-gwt-api.jar must come before gwt-dev.jar on your compile classpath.
A plugin is being built to automatically adjust maven runtime dependencies,
but users of ant or IDEs will need to ensure the super jar comes before
gwt-dev. We will petition gwt to accept our mods, but, until then,
if you want bleeding edge features, you gotta do bleeding edge configuration.
Code that ties directly into other modules, like java.lang.reflect for
the reflection submodule, have their super-source here, and generators or
other implementations in their own modules.
This is to maintain consistency in what is or isn't whitelisted in XApi GWT.
Some modules, like appengine, provide dependency-specific super-source
in their own packages. This module is for jre, junit and core XApi services.
0 downloads
Artifact xapi-gwt-api
Group net.wetheinter
Version 0.5
Last update 30. May 2015
Organization not specified
URL WeTheInter.net
License not specified
Dependencies amount 13
Dependencies xapi-dev-source, xapi-dev-source, xapi-core-api, xapi-core-api, xapi-core-inject, xapi-core-inject, xapi-core-reflect, xapi-core-reflect, xapi-core-util, xapi-core-util, javax.inject, validation-api, validation-api,
There are maybe transitive dependencies!
Group net.wetheinter
Version 0.5
Last update 30. May 2015
Organization not specified
URL WeTheInter.net
License not specified
Dependencies amount 13
Dependencies xapi-dev-source, xapi-dev-source, xapi-core-api, xapi-core-api, xapi-core-inject, xapi-core-inject, xapi-core-reflect, xapi-core-reflect, xapi-core-util, xapi-core-util, javax.inject, validation-api, validation-api,
There are maybe transitive dependencies!
commons-crypto from group org.apache.commons (version 1.2.0)
Apache Commons Crypto is a cryptographic library optimized with AES-NI (Advanced Encryption
Standard New Instructions). It provides Java API for both cipher level and Java stream level.
Developers can use it to implement high performance AES encryption/decryption with the minimum
code and effort. Please note that Crypto doesn't implement the cryptographic algorithm such as
AES directly. It wraps to OpenSSL or JCE which implement the algorithms.
Features
--------
1. Cipher API for low level cryptographic operations.
2. Java stream API (CryptoInputStream/CryptoOutputStream) for high level stream encryption/decryption.
3. Both optimized with high performance AES encryption/decryption. (1400 MB/s - 1700 MB/s throughput in modern Xeon processors).
4. JNI-based implementation to achieve comparable performance to the native C/C++ version based on OpenSsl.
5. Portable across various operating systems (currently only Linux/MacOSX/Windows);
Apache Commons Crypto loads the library according to your machine environment (it checks system properties, `os.name` and `os.arch`).
6. Simple usage. Add the commons-crypto-(version).jar file to your classpath.
Export restrictions
-------------------
This distribution includes cryptographic software.
The country in which you currently reside may have restrictions
on the import, possession, use, and/or re-export to another country,
of encryption software. BEFORE using any encryption software,
please check your country's laws, regulations and policies
concerning the import, possession, or use, and re-export of
encryption software, to see if this is permitted.
See <http://www.wassenaar.org/> for more information.
The U.S. Government Department of Commerce, Bureau of Industry and Security (BIS),
has classified this software as Export Commodity Control Number (ECCN) 5D002.C.1,
which includes information security software using or performing
cryptographic functions with asymmetric algorithms.
The form and manner of this Apache Software Foundation distribution makes
it eligible for export under the License Exception
ENC Technology Software Unrestricted (TSU) exception
(see the BIS Export Administration Regulations, Section 740.13)
for both object code and source code.
The following provides more details on the included cryptographic software:
* Commons Crypto use [Java Cryptography Extension](http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html) provided by Java
* Commons Crypto link to and use [OpenSSL](https://www.openssl.org/) ciphers
74 downloads
Artifact commons-crypto
Group org.apache.commons
Version 1.2.0
Last update 14. January 2023
Organization not specified
URL https://commons.apache.org/proper/commons-crypto/
License Apache License, Version 2.0
Dependencies amount 1
Dependencies jna,
There are maybe transitive dependencies!
Group org.apache.commons
Version 1.2.0
Last update 14. January 2023
Organization not specified
URL https://commons.apache.org/proper/commons-crypto/
License Apache License, Version 2.0
Dependencies amount 1
Dependencies jna,
There are maybe transitive dependencies!
xapi-gwt-parent from group net.wetheinter (version 0.5)
This is the main aggregator for all gwt submodules.
All gwt-specific code resides here.
Submodules should avoid inheriting from each other unless necessary.
This goes for maven structure and gwt.xml structure.
The super module is where our jre emulation layer and super-source live;
all modules should inherit super, and a minimum of other modules.
Some modules, like injection, are fulfilling an api in the core module,
and should be accessed only through core service interfaces.
Other modules, like reflection, are capable of being standalone inherits,
but can benefit from core utilities like injection,
so, two (or more) .gwt.xml modules may be provided.
As XApi nears 1.0, all submodules will be routinely stitched together into
an uber-jar, in order to have a single jar with a single gwt module
that can provide all of the services at once.
Internal projects will never use the uber jar, to help maintain modularity,
but external projects that want to use more than one service
will certainly prefer inheriting one artifact, instead of twelve.
When distributed in uber-jar format, it will likely be necessary for
either the uber jar, or just xapi-gwt-api.jar to appear before gwt-dev
on your compile-time classpath. If using gwt-maven-plugin, the
gwtFirstOnClasspath option may become problematic. If so, we will provide
a forked gwt-plugin to make sure our compiler enhancements are included in
the build process.
There is also work going on to make a super-source-everything plugin,
which will use maven to find source files, and generate synthetic .gwt.xml
for you, as part of an effort to create a wholly unified programming
environment. In addition to java-to-javascript, we intend to compile
java-to-java and possibly other languages, like go; imagine implementing
gwt deferred binding to eliminate cross-platform differences between
server environments, or operating systems, or versions of a platform,
or anywhere else a core api needs to bind to multiple implementations,
depending on the runtime environment.
Group: net.wetheinter Artifact: xapi-gwt-parent
Show all versions
Show all versions
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact xapi-gwt-parent
Group net.wetheinter
Version 0.5
Last update 30. May 2015
Organization not specified
URL WeTheInter.net
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
Group net.wetheinter
Version 0.5
Last update 30. May 2015
Organization not specified
URL WeTheInter.net
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
pact-jvm-provider-junit5_2.12 from group au.com.dius (version 3.6.15)
# Pact Junit 5 Extension
## Overview
For writing Pact verification tests with JUnit 5, there is an JUnit 5 Invocation Context Provider that you can use with
the `@TestTemplate` annotation. This will generate a test for each interaction found for the pact files for the provider.
To use it, add the `@Provider` and one of the pact source annotations to your test class (as per a JUnit 4 test), then
add a method annotated with `@TestTemplate` and `@ExtendWith(PactVerificationInvocationContextProvider.class)` that
takes a `PactVerificationContext` parameter. You will need to call `verifyInteraction()` on the context parameter in
your test template method.
For example:
```java
@Provider("myAwesomeService")
@PactFolder("pacts")
public class ContractVerificationTest {
@TestTemplate
@ExtendWith(PactVerificationInvocationContextProvider.class)
void pactVerificationTestTemplate(PactVerificationContext context) {
context.verifyInteraction();
}
}
```
For details on the provider and pact source annotations, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs.
## Test target
You can set the test target (the object that defines the target of the test, which should point to your provider) on the
`PactVerificationContext`, but you need to do this in a before test method (annotated with `@BeforeEach`). There are three
different test targets you can use: `HttpTestTarget`, `HttpsTestTarget` and `AmpqTestTarget`.
For example:
```java
@BeforeEach
void before(PactVerificationContext context) {
context.setTarget(HttpTestTarget.fromUrl(new URL(myProviderUrl)));
// or something like
// context.setTarget(new HttpTestTarget("localhost", myProviderPort, "/"));
}
```
**Note for Maven users:** If you use Maven to run your tests, you will have to make sure that the Maven Surefire plugin is at least
version 2.22.1 uses an isolated classpath.
For example, configure it by adding the following to your POM:
```xml
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.22.1</version>
<configuration>
<useSystemClassLoader>false</useSystemClassLoader>
</configuration>
</plugin>
```
## Provider State Methods
Provider State Methods work in the same way as with JUnit 4 tests, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs.
### Using multiple classes for the state change methods
If you have a large number of state change methods, you can split things up by moving them to other classes. You will
need to specify the additional classes on the test context in a `Before` method. Do this with the `withStateHandler`
or `setStateHandlers` methods. See [StateAnnotationsOnAdditionalClassTest](pact-jvm-provider-junit5/src/test/java/au/com/dius/pact/provider/junit5/StateAnnotationsOnAdditionalClassTest.java) for an example.
## Modifying the requests before they are sent
**Important Note:** You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests!
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Http and Https test targets support injecting the request that will executed into the test template method.
You can then add things to the request before calling the `verifyInteraction()` method.
For example to add a header:
```java
@TestTemplate
@ExtendWith(PactVerificationInvocationContextProvider.class)
void testTemplate(PactVerificationContext context, HttpRequest request) {
// This will add a header to the request
request.addHeader("X-Auth-Token", "1234");
context.verifyInteraction();
}
```
## Objects that can be injected into the test methods
You can inject the following objects into your test methods (just like the `PactVerificationContext`). They will be null if injected before the
supported phase.
| Object | Can be injected from phase | Description |
| ------ | --------------- | ----------- |
| PactVerificationContext | @BeforeEach | The context to use to execute the interaction test |
| Pact | any | The Pact model for the test |
| Interaction | any | The Interaction model for the test |
| HttpRequest | @TestTemplate | The request that is going to be executed (only for HTTP and HTTPS targets) |
| ProviderVerifier | @TestTemplate | The verifier instance that is used to verify the interaction |
Group: au.com.dius Artifact: pact-jvm-provider-junit5_2.12
Show all versions Show documentation Show source
Show all versions Show documentation Show source
4 downloads
Artifact pact-jvm-provider-junit5_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 3
Dependencies pact-jvm-support, pact-jvm-provider_2.12, junit-jupiter-api,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 3
Dependencies pact-jvm-support, pact-jvm-provider_2.12, junit-jupiter-api,
There are maybe transitive dependencies!
pact-jvm-provider-junit5 from group au.com.dius (version 4.0.10)
# Pact Junit 5 Extension
## Overview
For writing Pact verification tests with JUnit 5, there is an JUnit 5 Invocation Context Provider that you can use with
the `@TestTemplate` annotation. This will generate a test for each interaction found for the pact files for the provider.
To use it, add the `@Provider` and one of the pact source annotations to your test class (as per a JUnit 4 test), then
add a method annotated with `@TestTemplate` and `@ExtendWith(PactVerificationInvocationContextProvider.class)` that
takes a `PactVerificationContext` parameter. You will need to call `verifyInteraction()` on the context parameter in
your test template method.
For example:
```java
@Provider("myAwesomeService")
@PactFolder("pacts")
public class ContractVerificationTest {
@TestTemplate
@ExtendWith(PactVerificationInvocationContextProvider.class)
void pactVerificationTestTemplate(PactVerificationContext context) {
context.verifyInteraction();
}
}
```
For details on the provider and pact source annotations, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs.
## Test target
You can set the test target (the object that defines the target of the test, which should point to your provider) on the
`PactVerificationContext`, but you need to do this in a before test method (annotated with `@BeforeEach`). There are three
different test targets you can use: `HttpTestTarget`, `HttpsTestTarget` and `AmpqTestTarget`.
For example:
```java
@BeforeEach
void before(PactVerificationContext context) {
context.setTarget(HttpTestTarget.fromUrl(new URL(myProviderUrl)));
// or something like
// context.setTarget(new HttpTestTarget("localhost", myProviderPort, "/"));
}
```
**Note for Maven users:** If you use Maven to run your tests, you will have to make sure that the Maven Surefire plugin is at least
version 2.22.1 uses an isolated classpath.
For example, configure it by adding the following to your POM:
```xml
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.22.1</version>
<configuration>
<useSystemClassLoader>false</useSystemClassLoader>
</configuration>
</plugin>
```
## Provider State Methods
Provider State Methods work in the same way as with JUnit 4 tests, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs.
### Using multiple classes for the state change methods
If you have a large number of state change methods, you can split things up by moving them to other classes. You will
need to specify the additional classes on the test context in a `Before` method. Do this with the `withStateHandler`
or `setStateHandlers` methods. See [StateAnnotationsOnAdditionalClassTest](src/test/java/au/com/dius/pact/provider/junit5/StateAnnotationsOnAdditionalClassTest.java) for an example.
## Modifying the requests before they are sent
**Important Note:** You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be
authentication tokens, which have a small life span. The Http and Https test targets support injecting the request that
will executed into the test template method.
You can then add things to the request before calling the `verifyInteraction()` method.
For example to add a header:
```java
@TestTemplate
@ExtendWith(PactVerificationInvocationContextProvider.class)
void testTemplate(PactVerificationContext context, HttpRequest request) {
// This will add a header to the request
request.addHeader("X-Auth-Token", "1234");
context.verifyInteraction();
}
```
## Objects that can be injected into the test methods
You can inject the following objects into your test methods (just like the `PactVerificationContext`). They will be null if injected before the
supported phase.
| Object | Can be injected from phase | Description |
| ------ | --------------- | ----------- |
| PactVerificationContext | @BeforeEach | The context to use to execute the interaction test |
| Pact | any | The Pact model for the test |
| Interaction | any | The Interaction model for the test |
| HttpRequest | @TestTemplate | The request that is going to be executed (only for HTTP and HTTPS targets) |
| ProviderVerifier | @TestTemplate | The verifier instance that is used to verify the interaction |
## Allowing the test to pass when no pacts are found to verify (version 4.0.7+)
By default, the test will fail with an exception if no pacts were found to verify. This can be overridden by adding the
`@IgnoreNoPactsToVerify` annotation to the test class. For this to work, you test class will need to be able to receive
null values for any of the injected parameters.
Group: au.com.dius Artifact: pact-jvm-provider-junit5
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact pact-jvm-provider-junit5
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 3
Dependencies junit-jupiter-api, pact-jvm-core-support, pact-jvm-provider,
There are maybe transitive dependencies!
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 3
Dependencies junit-jupiter-api, pact-jvm-core-support, pact-jvm-provider,
There are maybe transitive dependencies!
pact-jvm-provider-maven_2.11 from group au.com.dius (version 3.5.24)
Maven plugin to verify a provider
=================================
Maven plugin for verifying pacts against a provider.
The Maven plugin provides a `verify` goal which will verify all configured pacts against your provider.
## To Use It
### 1. Add the pact-jvm-provider-maven plugin to your `build` section of your pom file.
```xml
<build>
[...]
<plugins>
[...]
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
</plugin>
[...]
</plugins>
[...]
</build>
```
### 2. Define the pacts between your consumers and providers
You define all the providers and consumers within the configuration element of the maven plugin.
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<!-- You can define as many as you need, but each must have a unique name -->
<serviceProvider>
<name>provider1</name>
<!-- All the provider properties are optional, and have sensible defaults (shown below) -->
<protocol>http</protocol>
<host>localhost</host>
<port>8080</port>
<path>/</path>
<consumers>
<!-- Again, you can define as many consumers for each provider as you need, but each must have a unique name -->
<consumer>
<name>consumer1</name>
<!-- currently supports a file path using pactFile or a URL using pactUrl -->
<pactFile>path/to/provider1-consumer1-pact.json</pactFile>
</consumer>
</consumers>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
### 3. Execute `mvn pact:verify`
You will have to have your provider running for this to pass.
## Verifying all pact files in a directory for a provider
You can specify a directory that contains pact files, and the Pact plugin will scan for all pact files that match that
provider and define a consumer for each pact file in the directory. Consumer name is read from contents of pact file.
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<!-- You can define as many as you need, but each must have a unique name -->
<serviceProvider>
<name>provider1</name>
<!-- All the provider properties are optional, and have sensible defaults (shown below) -->
<protocol>http</protocol>
<host>localhost</host>
<port>8080</port>
<path>/</path>
<pactFileDirectory>path/to/pacts</pactFileDirectory>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
### Verifying all pact files from multiple directories for a provider [3.5.18+]
If you want to specify multiple directories, you can use `pactFileDirectories`. The plugin will only fail the build if
no pact files are loaded after processing all the directories in the list.
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.18</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>provider1</name>
<pactFileDirectories>
<pactFileDirectory>path/to/pacts1</pactFileDirectory>
<pactFileDirectory>path/to/pacts2</pactFileDirectory>
</pactFileDirectories>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
## Enabling insecure SSL
For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting
`<insecure>true</insecure>` on the provider.
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>provider1</name>
<pactFileDirectory>path/to/pacts</pactFileDirectory>
<insecure>true</insecure>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
## Specifying a custom trust store
For environments that are running their own certificate chains:
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>provider1</name>
<pactFileDirectory>path/to/pacts</pactFileDirectory>
<trustStore>relative/path/to/trustStore.jks</trustStore>
<trustStorePassword>changeit</trustStorePassword>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
`trustStore` is either relative to the current working (build) directory. `trustStorePassword` defaults to `changeit`.
NOTE: The hostname will still be verified against the certificate.
## Modifying the requests before they are sent
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would
be authentication tokens, which have a small life span. The Pact Maven plugin provides a request filter that can be
set to a Groovy script on the provider that will be called before the request is made. This script will receive the HttpRequest
bound to a variable named `request` prior to it being executed.
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>provider1</name>
<requestFilter>
// This is a Groovy script that adds an Authorization header to each request
request.addHeader('Authorization', 'oauth-token eyJhbGciOiJSUzI1NiIsIm...')
</requestFilter>
<consumers>
<consumer>
<name>consumer1</name>
<pactFile>path/to/provider1-consumer1-pact.json</pactFile>
</consumer>
</consumers>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
__*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
## Modifying the HTTP Client Used
The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`).
This can be changed by specifying a closure assigned to createClient on the provider that returns a CloseableHttpClient.
For example:
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>provider1</name>
<createClient>
// This is a Groovy script that will enable the client to accept self-signed certificates
import org.apache.http.ssl.SSLContextBuilder
import org.apache.http.conn.ssl.NoopHostnameVerifier
import org.apache.http.impl.client.HttpClients
HttpClients.custom().setSSLHostnameVerifier(new NoopHostnameVerifier())
.setSslcontext(new SSLContextBuilder().loadTrustMaterial(null, { x509Certificates, s -> true })
.build())
.build()
</createClient>
<consumers>
<consumer>
<name>consumer1</name>
<pactFile>path/to/provider1-consumer1-pact.json</pactFile>
</consumer>
</consumers>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
## Turning off URL decoding of the paths in the pact file
By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this
behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`.
__*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are
correctly encoded. The verifier will not be able to make a request with an invalid encoded path.
## Plugin Properties
The following plugin properties can be specified with `-Dproperty=value` on the command line or in the configuration section:
|Property|Description|
|--------|-----------|
|pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors|
|pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies|
|pact.filter.consumers|Comma separated list of consumer names to verify|
|pact.filter.description|Only verify interactions whose description match the provided regular expression|
|pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state|
|pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]|
|pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'|
Example in the configuration section:
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>provider1</name>
<consumers>
<consumer>
<name>consumer1</name>
<pactFile>path/to/provider1-consumer1-pact.json</pactFile>
</consumer>
</consumers>
</serviceProvider>
</serviceProviders>
<configuration>
<pact.showStacktrace>true</pact.showStacktrace>
</configuration>
</configuration>
</plugin>
```
## Provider States
For each provider you can specify a state change URL to use to switch the state of the provider. This URL will
receive the providerState description and parameters from the pact file before each interaction via a POST. The stateChangeUsesBody
controls if the state is passed in the request body or as query parameters.
These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given.
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>provider1</name>
<stateChangeUrl>http://localhost:8080/tasks/pactStateChange</stateChangeUrl>
<stateChangeUsesBody>false</stateChangeUsesBody> <!-- defaults to true -->
<consumers>
<consumer>
<name>consumer1</name>
<pactFile>path/to/provider1-consumer1-pact.json</pactFile>
<stateChangeUrl>http://localhost:8080/tasks/pactStateChangeForConsumer1</stateChangeUrl>
<stateChangeUsesBody>false</stateChangeUsesBody> <!-- defaults to true -->
</consumer>
</consumers>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
If the `stateChangeUsesBody` is not specified, or is set to true, then the provider state description and parameters will be sent as
JSON in the body of the request. If it is set to false, they will passed as query parameters.
As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before
it is sent. Set `stateChangeRequestFilter` to a Groovy script on the provider that will be called before the request is made.
#### Teardown calls for state changes
You can enable teardown state change calls by setting the property `<stateChangeTeardown>true</stateChangeTeardown>` on the provider. This
will add an `action` parameter to the state change call. The setup call before the test will receive `action=setup`, and
then a teardown call will be made afterwards to the state change URL with `action=teardown`.
## Verifying pact files from a pact broker
You can setup your build to validate against the pacts stored in a pact broker. The pact plugin will query
the pact broker for all consumers that have a pact with the provider based on its name. To use it, just configure the
`pactBrokerUrl` or `pactBroker` value for the provider with the base URL to the pact broker.
For example:
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>provider1</name>
<stateChangeUrl>http://localhost:8080/tasks/pactStateChange</stateChangeUrl>
<pactBrokerUrl>http://pact-broker:5000/</pactBrokerUrl>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
### Verifying pacts from an authenticated pact broker
If your pact broker requires authentication (basic authentication is only supported), you can configure the username
and password to use by configuring the `authentication` element of the `pactBroker` element of your provider.
For example:
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>provider1</name>
<stateChangeUrl>http://localhost:8080/tasks/pactStateChange</stateChangeUrl>
<pactBroker>
<url>http://pactbroker:1234</url>
<authentication>
<username>test</username>
<password>test</password>
</authentication>
</pactBroker>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
#### Using the Maven servers configuration [version 3.5.6+]
From version 3.5.6, you can use the servers setup in the Maven settings. To do this, setup a server as per the
[Maven Server Settings](https://maven.apache.org/settings.html#Servers). Then set the server ID in the pact broker
configuration in your POM.
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.6</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>provider1</name>
<stateChangeUrl>http://localhost:8080/tasks/pactStateChange</stateChangeUrl>
<pactBroker>
<url>http://pactbroker:1234</url>
<serverId>test-pact-broker</serverId> <!-- This must match the server id in the maven settings -->
</pactBroker>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
### Verifying pacts from an pact broker that match particular tags
If your pacts in your pact broker have been tagged, you can set the tags to fetch by configuring the `tags`
element of the `pactBroker` element of your provider.
For example:
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>provider1</name>
<stateChangeUrl>http://localhost:8080/tasks/pactStateChange</stateChangeUrl>
<pactBroker>
<url>http://pactbroker:1234</url>
<tags>
<tag>TEST</tag>
<tag>DEV</tag>
</tags>
</pactBroker>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
This example will fetch and validate the pacts for the TEST and DEV tags.
## Filtering the interactions that are verified
You can filter the interactions that are run using three properties: `pact.filter.consumers`, `pact.filter.description` and `pact.filter.providerState`.
Adding `-Dpact.filter.consumers=consumer1,consumer2` to the command line or configuration section will only run the pact files for those
consumers (consumer1 and consumer2). Adding `-Dpact.filter.description=a request for payment.*` will only run those interactions
whose descriptions start with 'a request for payment'. `-Dpact.filter.providerState=.*payment` will match any interaction that
has a provider state that ends with payment, and `-Dpact.filter.providerState=` will match any interaction that does not have a
provider state.
## Not failing the build if no pact files are found [version 3.5.19+]
By default, if there are no pact files to verify, the plugin will raise an exception. This is to guard against false
positives where the build is passing but nothing has been verified due to mis-configuration.
To disable this behaviour, set the `failIfNoPactsFound` parameter to `false`.
# Verifying a message provider
The Maven plugin has been updated to allow invoking test methods that can return the message contents from a message
producer. To use it, set the way to invoke the verification to `ANNOTATED_METHOD`. This will allow the pact verification
task to scan for test methods that return the message contents.
Add something like the following to your maven pom file:
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>messageProvider</name>
<verificationType>ANNOTATED_METHOD</verificationType>
<!-- packagesToScan is optional, but leaving it out will result in the entire
test classpath being scanned. Set it to the packages where your annotated test method
can be found. -->
<packagesToScan>
<packageToScan>au.com.example.messageprovider.*</packageToScan>
</packagesToScan>
<consumers>
<consumer>
<name>consumer1</name>
<pactFile>path/to/messageprovider-consumer1-pact.json</pactFile>
</consumer>
</consumers>
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>
```
Now when the pact verify task is run, will look for methods annotated with `@PactVerifyProvider` in the test classpath
that have a matching description to what is in the pact file.
```groovy
class ConfirmationKafkaMessageBuilderTest {
@PactVerifyProvider('an order confirmation message')
String verifyMessageForOrder() {
Order order = new Order()
order.setId(10000004)
order.setExchange('ASX')
order.setSecurityCode('CBA')
order.setPrice(BigDecimal.TEN)
order.setUnits(15)
order.setGst(new BigDecimal('15.0'))
odrer.setFees(BigDecimal.TEN)
def message = new ConfirmationKafkaMessageBuilder()
.withOrder(order)
.build()
JsonOutput.toJson(message)
}
}
```
It will then validate that the returned contents matches the contents for the message in the pact file.
## Changing the class path that is scanned
By default, the test classpath is scanned for annotated methods. You can override this by setting
the `classpathElements` property:
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>messageProvider</name>
<verificationType>ANNOTATED_METHOD</verificationType>
<consumers>
<consumer>
<name>consumer1</name>
<pactFile>path/to/messageprovider-consumer1-pact.json</pactFile>
</consumer>
</consumers>
</serviceProvider>
</serviceProviders>
<classpathElements>
<classpathElement>
build/classes/test
</classpathElement>
</classpathElements>
</configuration>
</plugin>
```
# Publishing pact files to a pact broker
The pact maven plugin provides a `publish` mojo that can publish all pact files in a directory
to a pact broker. To use it, you need to add a publish configuration to the POM that defines the
directory where the pact files are and the URL to the pact broker.
For example:
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<pactDirectory>path/to/pact/files</pactDirectory> <!-- Defaults to ${project.build.directory}/pacts -->
<pactBrokerUrl>http://pactbroker:1234</pactBrokerUrl>
<projectVersion>1.0.100</projectVersion> <!-- Defaults to ${project.version} -->
<trimSnapshot>true</trimSnapshot> <!-- Defaults to false -->
</configuration>
</plugin>
```
You can now execute `mvn pact:publish` to publish the pact files.
_NOTE:_ The pact broker requires a version for all published pacts. The `publish` task will use the version of the
project by default, but can be overwritten with the `projectVersion` property. Make sure you have set one otherwise the broker will reject the pact files.
_NOTE_: By default, the pact broker has issues parsing `SNAPSHOT` versions. You can configure the publisher to
automatically remove `-SNAPSHOT` from your version number by setting `trimSnapshot` to true. This setting does not modify non-snapshot versions.
You can set any tags that the pacts should be published with by setting the `tags` list property (version 3.5.12+). A common use of this
is setting the tag to the current source control branch. This supports using pact with feature branches.
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.12</version>
<configuration>
<pactDirectory>path/to/pact/files</pactDirectory> <!-- Defaults to ${project.build.directory}/pacts -->
<pactBrokerUrl>http://pactbroker:1234</pactBrokerUrl>
<projectVersion>1.0.100</projectVersion> <!-- Defaults to ${project.version} -->
<tags>
<tag>feature/feature_name</tag>
</tags>
</configuration>
</plugin>
```
## Publishing to an authenticated pact broker
For an authenticated pact broker, you can pass in the credentials with the `pactBrokerUsername` and `pactBrokerPassword`
properties. Currently it only supports basic authentication.
For example:
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.11</version>
<configuration>
<pactBrokerUrl>http://pactbroker:1234</pactBrokerUrl>
<pactBrokerUsername>USERNAME</pactBrokerUsername>
<pactBrokerPassword>PASSWORD</pactBrokerPassword>
</configuration>
</plugin>
```
#### Using the Maven servers configuration [version 3.5.6+]
From version 3.5.6, you can use the servers setup in the Maven settings. To do this, setup a server as per the
[Maven Server Settings](https://maven.apache.org/settings.html#Servers). Then set the server ID in the pact broker
configuration in your POM.
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.11</artifactId>
<version>3.5.19</version>
<configuration>
<pactBrokerUrl>http://pactbroker:1234</pactBrokerUrl>
<pactBrokerServerId>test-pact-broker</pactBrokerServerId> <!-- This must match the server id in the maven settings -->
</configuration>
</plugin>
```
## Excluding pacts from being published [version 3.5.19+]
You can exclude some of the pact files from being published by providing a list of regular expressions that match
against the base names of the pact files.
For example:
```groovy
pact {
publish {
pactBrokerUrl = 'https://mypactbroker.com'
excludes = [ '.*\\-\\d+$' ] // exclude all pact files that end with a dash followed by a number in the name
}
}
```
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.19</version>
<configuration>
<pactBrokerUrl>http://pactbroker:1234</pactBrokerUrl>
<excludes>
<exclude>.*\\-\\d+$</exclude> <!-- exclude pact files where the name ends in a dash followed by a number -->
</excludes>
</configuration>
</plugin>
```
# Publishing verification results to a Pact Broker [version 3.5.4+]
For pacts that are loaded from a Pact Broker, the results of running the verification can be published back to the
broker against the URL for the pact. You will be able to then see the result on the Pact Broker home screen.
To turn on the verification publishing, set the system property `pact.verifier.publishResults` to `true` in the pact maven plugin, not surefire, configuration.
# Enabling other verification reports [version 3.5.20+]
By default the verification report is written to the console. You can also enable a JSON or Markdown report by setting
the `reports` configuration list.
```xml
<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven_2.12</artifactId>
<version>3.5.20</version>
<configuration>
<reports>
<report>console</report>
<report>json</report>
<report>markdown</report>
</reports>
</configuration>
</plugin>
```
These reports will be written to `target/reports/pact`.
Group: au.com.dius Artifact: pact-jvm-provider-maven_2.11
Show all versions Show documentation Show source
Show all versions Show documentation Show source
4 downloads
Artifact pact-jvm-provider-maven_2.11
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 12
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-provider_2.11, maven-plugin-api, maven-plugin-annotations, maven-core, jansi,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 12
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-provider_2.11, maven-plugin-api, maven-plugin-annotations, maven-core, jansi,
There are maybe transitive dependencies!
Page 40 from 41 (items total 409)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy