Download JAR files tagged by conjugate with all dependencies
RBFNetwork from group nz.ac.waikato.cms.weka (version 1.0.8)
RBFNetwork implements a normalized Gaussian radial basisbasis function network.
It uses the k-means clustering algorithm to provide the basis functions and learns either a logistic regression (discrete class problems) or linear regression (numeric class problems) on top of that. Symmetric multivariate Gaussians are fit to the data from each cluster. If the class is nominal it uses the given number of clusters per class. RBFRegressor implements radial basis function networks for regression, trained in a fully supervised manner using WEKA's Optimization class by minimizing squared error with the BFGS method. It is possible to use conjugate gradient descent rather than BFGS updates, which is faster for cases with many parameters, and to use normalized basis functions instead of unnormalized ones.
11 downloads
Artifact RBFNetwork
Group nz.ac.waikato.cms.weka
Version 1.0.8
Last update 16. January 2015
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/RBFNetwork
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.8
Last update 16. January 2015
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/RBFNetwork
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
kernelLogisticRegression from group nz.ac.waikato.cms.weka (version 1.0.0)
This package contains a classifier that can be used to train a two-class kernel logistic regression model with the kernel functions that are available in WEKA. It optimises the negative log-likelihood with a quadratic penalty. Both, BFGS and conjugate gradient descent, are available as optimisation methods, but the former is normally faster. It is possible to use multiple threads, but the speed-up is generally very marginal when used with BFGS optimisation. With conjugate gradient descent optimisation, greater speed-ups can be achieved when using multiple threads. With the default kernel, the dot product kernel, this method produces results that are close to identical to those obtained using standard logistic regression in WEKA, provided a sufficiently large value for the parameter determining the size of the quadratic penalty is used in both cases.
0 downloads
Artifact kernelLogisticRegression
Group nz.ac.waikato.cms.weka
Version 1.0.0
Last update 26. June 2013
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/kernelLogisticRegression
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.0
Last update 26. June 2013
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/kernelLogisticRegression
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Page 1 from 1 (items total 2)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy