All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download JAR files tagged by directory with all dependencies

Search JAR files by class name

finch-kotlin from group com.tryfinch.api (version 0.22.3)

Group: com.tryfinch.api Artifact: finch-kotlin
Show all versions Show documentation Show source 
 

0 downloads
Artifact finch-kotlin
Group com.tryfinch.api
Version 0.22.3


finch-kotlin-client-okhttp from group com.tryfinch.api (version 0.22.3)

Group: com.tryfinch.api Artifact: finch-kotlin-client-okhttp
Show all versions Show documentation Show source 
 

0 downloads
Artifact finch-kotlin-client-okhttp
Group com.tryfinch.api
Version 0.22.3


finch-kotlin-core from group com.tryfinch.api (version 0.22.3)

Group: com.tryfinch.api Artifact: finch-kotlin-core
Show all versions Show documentation Show source 
 

0 downloads
Artifact finch-kotlin-core
Group com.tryfinch.api
Version 0.22.3


finch-java from group com.tryfinch.api (version 0.26.2)

Group: com.tryfinch.api Artifact: finch-java
Show all versions Show documentation Show source 
 

0 downloads
Artifact finch-java
Group com.tryfinch.api
Version 0.26.2


finch-java-client-okhttp from group com.tryfinch.api (version 0.26.2)

Group: com.tryfinch.api Artifact: finch-java-client-okhttp
Show all versions Show documentation Show source 
 

0 downloads
Artifact finch-java-client-okhttp
Group com.tryfinch.api
Version 0.26.2


finch-java-core from group com.tryfinch.api (version 0.26.2)

The Finch HRIS API provides a unified way to connect to a multitide of HRIS systems. The API requires an access token issued by Finch. By default, Organization and Payroll requests use Finch's [Data Syncs](/development-guides/Data-Syncs). If a request is made before the initial sync has completed, Finch will request data live from the provider. The latency on live requests may range from seconds to minutes depending on the provider and batch size. For automated integrations, Deductions requests (both read and write) are always made live to the provider. Latencies may range from seconds to minutes depending on the provider and batch size. Employer products are specified by the product parameter, a space-separated list of products that your application requests from an employer authenticating through Finch Connect. Valid product names are— - `company`: Read basic company data - `directory`: Read company directory and organization structure - `individual`: Read individual data, excluding income and employment data - `employment`: Read individual employment and income data - `payment`: Read payroll and contractor related payments by the company - `pay_statement`: Read detailed pay statements for each individual - `benefits`: Create and manage deductions and contributions and enrollment for an employer [![Open in Postman](https://run.pstmn.io/button.svg)](https://god.gw.postman.com/run-collection/21027137-08db0929-883d-4094-a9ce-dbf5a9bee4a4?action=collection%2Ffork&collection-url=entityId%3D21027137-08db0929-883d-4094-a9ce-dbf5a9bee4a4%26entityType%3Dcollection%26workspaceId%3D1edf19bc-e0a8-41e9-ac55-481a4b50790b)

Group: com.tryfinch.api Artifact: finch-java-core
Show all versions Show documentation Show source 
 

0 downloads
Artifact finch-java-core
Group com.tryfinch.api
Version 0.26.2
Last update 23. April 2024
Organization not specified
URL https://developer.tryfinch.com/
License Apache-2.0
Dependencies amount 4
Dependencies jackson-core, jackson-databind, guava, kotlin-stdlib,
There are maybe transitive dependencies!

git-commit-id-plugin from group at.molindo (version 2.1.10-alpha-1)

git-commit-id-plugin is a plugin quite similar to https://fisheye.codehaus.org/browse/mojo/tags/buildnumber-maven-plugin-1.0-beta-4 for example but as buildnumber only supports svn (which is very sad) and cvs (which is even more sad). This plugin makes basic repository information available through maven resources. This can be used to display "what version is this?" or "who has deployed this and when, from which branch?" information at runtime - making it easy to find things like "oh, that isn't deployed yet, I'll test it tomorrow" and making both testers and developers life easier. The data currently exported is like this (that's the end effect from the GitRepositoryState Bean): { "branch" : "testing-maven-git-plugin", "commitTime" : "06.01.1970 @ 16:16:26 CET", "commitId" : "787e39f61f99110e74deed68ab9093088d64b969", "commitUserName" : "Konrad Malawski", "commitUserEmail" : "[email protected]", "commitMessageFull" : "releasing my fun plugin :-) + fixed some typos + cleaned up directory structure + added license etc", "commitMessageShort" : "releasing my fun plugin :-)", "buildTime" : "06.01.1970 @ 16:17:53 CET", "buildUserName" : "Konrad Malawski", "buildUserEmail" : "[email protected]" } Note that the data is exported via maven resource filtering and is really easy to use with spring - which I've explained in detail in this readme https://github.com/ktoso/maven-git-commit-id-plugin

Group: at.molindo Artifact: git-commit-id-plugin
Show documentation Show source 
 

0 downloads
Artifact git-commit-id-plugin
Group at.molindo
Version 2.1.10-alpha-1
Last update 28. December 2015
Organization not specified
URL http://www.blog.project13.pl
License GNU Lesser General Public License 3.0
Dependencies amount 8
Dependencies maven-plugin-api, maven-project, jackson-databind, guice, joda-time, guava, annotations, org.eclipse.jgit,
There are maybe transitive dependencies!

pact-jvm-server_2.12 from group au.com.dius (version 3.6.15)

Pact server =========== The pact server is a stand-alone interactions recorder and verifier, aimed at clients that are non-JVM or non-Ruby based. The pact client for that platform will need to be implemented, but it only be responsible for generating the `JSON` interactions, running the tests and communicating with the server. The server implements a `JSON` `REST` Admin API with the following endpoints. / -> For diagnostics, currently returns a list of ports of the running mock servers. /create -> For initialising a test server and submitting the JSON interactions. It returns a port /complete -> For finalising and verifying the interactions with the server. It writes the `JSON` pact file to disk. ## Running the server ### Versions 2.2.6+ Pact server takes the following parameters: ``` Usage: pact-jvm-server [options] [port] port port to run on (defaults to 29999) --help prints this usage text -h <value> | --host <value> host to bind to (defaults to localhost) -l <value> | --mock-port-lower <value> lower bound to allocate mock ports (defaults to 20000) -u <value> | --mock-port-upper <value> upper bound to allocate mock ports (defaults to 40000) -d | --daemon run as a daemon process -v <value> | --pact-version <value> pact version to generate for (2 or 3) -k <value> | --keystore-path <value> Path to keystore -p <value> | --keystore-password <value> Keystore password -s <value> | --ssl-port <value> Ssl port the mock server should run on. lower and upper bounds are ignored --debug run with debug logging ``` ### Using trust store 3.4.0+ Trust store can be used. However, it is limited to a single port for the time being. ### Prior to version 2.2.6 Pact server takes one optional parameter, the port number to listen on. If not provided, it will listen on 29999. It requires an active console to run. ### Using a distribution archive You can download a [distribution from maven central](http://search.maven.org/remotecontent?filepath=au/com/dius/pact-jvm-server_2.11/2.2.4/). There is both a ZIP and TAR archive. Unpack it to a directory of choice and then run the script in the bin directory. ### Building a distribution bundle You can build an application bundle with gradle by running (for 2.11 version): $ ./gradlew :pact-jvm-server_2.11:installdist This will create an app bundle in `build/2.11/install/pact-jvm-server_2.11`. You can then execute it with: $ java -jar pact-jvm-server/build/2.10/install/pact-jvm-server_2.11/lib/pact-jvm-server_2.11-3.2.11.jar or with the generated bundle script file: $ pact-jvm-server/build/2.11/install/pact-jvm-server_2.11/bin/pact-jvm-server_2.11 By default will run on port `29999` but a port number can be optionally supplied. ### Running it with docker You can use a docker image to execute the mock server as a docker container. $ docker run -d -p 8080:8080 -p 20000-20010:20000-20010 uglyog/pact-jvm-server This will run the main server on port 8080, and each created mock server on ports 20000-20010. You can map the ports to any you require. ## Life cycle The following actions are expected to occur * The client calls `/create` to initialise a server with the expected `JSON` interactions and state * The admin server will start a mock server on a random port and return the port number in the response * The client will execute its interaction tests against the mock server with the supplied port * Once finished, the client will call `/complete' on the Admin API, posting the port number * The pact server will verify the interactions and write the `JSON` `pact` file to disk under `/target` * The mock server running on the supplied port will be shutdown. ## Endpoints ### /create The client will need `POST` to `/create` the generated `JSON` interactions, also providing a state as a query parameter and a path. For example: POST http://localhost:29999/create?state=NoUsers&path=/sub/ref/path '{ "provider": { "name": "Animal_Service"}, ... }' This will create a new running mock service provider on a randomly generated port. The port will be returned in the `201` response: { "port" : 34423 } But you can also reference the path from `/sub/ref/path` using the server port. The service will not strip the prefix path, but instead will use it as a differentiator. If your services do not have differences in the prefix of their path, then you will have to use the port method. ### /complete Once the client has finished running its tests against the mock server on the supplied port (in this example port `34423`) the client will need to `POST` to `/complete` the port number of the mock server that was used. For example: POST http://localhost:29999/complete '{ "port" : 34423 }' This will cause the Pact server to verify the interactions, shutdown the mock server running on that port and writing the pact `JSON` file to disk under the `target` directory. ### / The `/` endpoint is for diagnostics and to check that the pact server is running. It will return all the currently running mock servers port numbers. For example: GET http://localhost:29999/ '{ "ports": [23443,43232] }'

Group: au.com.dius Artifact: pact-jvm-server_2.12
Show all versions Show documentation Show source 
 

2 downloads
Artifact pact-jvm-server_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 4
Dependencies pact-jvm-consumer_2.12, logback-core, logback-classic, scopt_2.12,
There are maybe transitive dependencies!

pact-jvm-consumer-junit5_2.12 from group au.com.dius (version 3.6.15)

pact-jvm-consumer-junit5 ======================== JUnit 5 support for Pact consumer tests ## Dependency The library is available on maven central using: * group-id = `au.com.dius` * artifact-id = `pact-jvm-consumer-junit5_2.12` * version-id = `3.6.x` ## Usage ### 1. Add the Pact consumer test extension to the test class. To write Pact consumer tests with JUnit 5, you need to add `@ExtendWith(PactConsumerTestExt)` to your test class. This replaces the `PactRunner` used for JUnit 4 tests. The rest of the test follows a similar pattern as for JUnit 4 tests. ```java @ExtendWith(PactConsumerTestExt.class) class ExampleJavaConsumerPactTest { ``` ### 2. create a method annotated with `@Pact` that returns the interactions for the test For each test (as with JUnit 4), you need to define a method annotated with the `@Pact` annotation that returns the interactions for the test. ```java @Pact(provider="ArticlesProvider", consumer="test_consumer") public RequestResponsePact createPact(PactDslWithProvider builder) { return builder .given("test state") .uponReceiving("ExampleJavaConsumerPactTest test interaction") .path("/articles.json") .method("GET") .willRespondWith() .status(200) .body("{\"responsetest\": true}") .toPact(); } ``` ### 3. Link the mock server with the interactions for the test with `@PactTestFor` Then the final step is to use the `@PactTestFor` annotation to tell the Pact extension how to setup the Pact test. You can either put this annotation on the test class, or on the test method. For examples see [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) and [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy). The `@PactTestFor` annotation allows you to control the mock server in the same way as the JUnit 4 `PactProviderRule`. It allows you to set the hostname to bind to (default is `localhost`) and the port (default is to use a random port). You can also set the Pact specification version to use (default is V3). ```java @ExtendWith(PactConsumerTestExt.class) @PactTestFor(providerName = "ArticlesProvider") public class ExampleJavaConsumerPactTest { ``` **NOTE on the hostname**: The mock server runs in the same JVM as the test, so the only valid values for hostname are: | hostname | result | | -------- | ------ | | `localhost` | binds to the address that localhost points to (normally the loopback adapter) | | `127.0.0.1` or `::1` | binds to the loopback adapter | | host name | binds to the default interface that the host machines DNS name resolves to | | `0.0.0.0` or `::` | binds to the all interfaces on the host machine | #### Matching the interactions by provider name If you set the `providerName` on the `@PactTestFor` annotation, then the first method with a `@Pact` annotation with the same provider name will be used. See [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) for an example. #### Matching the interactions by method name If you set the `pactMethod` on the `@PactTestFor` annotation, then the method with the provided name will be used (it still needs a `@Pact` annotation). See [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy) for an example. ### Injecting the mock server into the test You can get the mock server injected into the test method by adding a `MockServer` parameter to the test method. ```java @Test void test(MockServer mockServer) throws IOException { HttpResponse httpResponse = Request.Get(mockServer.getUrl() + "/articles.json").execute().returnResponse(); assertThat(httpResponse.getStatusLine().getStatusCode(), is(equalTo(200))); } ``` This helps with getting the base URL of the mock server, especially when a random port is used. ## Changing the directory pact files are written to By default, pact files are written to `target/pacts` (or `build/pacts` if you use Gradle), but this can be overwritten with the `pact.rootDir` system property. This property needs to be set on the test JVM as most build tools will fork a new JVM to run the tests. For Gradle, add this to your build.gradle: ```groovy test { systemProperties['pact.rootDir'] = "$buildDir/custom-pacts-directory" } ``` For maven, use the systemPropertyVariables configuration: ```xml <project> [...] <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.18</version> <configuration> <systemPropertyVariables> <pact.rootDir>some/other/directory</pact.rootDir> <buildDirectory>${project.build.directory}</buildDirectory> [...] </systemPropertyVariables> </configuration> </plugin> </plugins> </build> [...] </project> ``` For SBT: ```scala fork in Test := true, javaOptions in Test := Seq("-Dpact.rootDir=some/other/directory") ``` ### Using `@PactFolder` annotation [3.6.2+] You can override the directory the pacts are written in a test by adding the `@PactFolder` annotation to the test class. ## Forcing pact files to be overwritten (3.6.5+) By default, when the pact file is written, it will be merged with any existing pact file. To force the file to be overwritten, set the Java system property `pact.writer.overwrite` to `true`. ## Unsupported The current implementation does not support tests with multiple providers. This will be added in a later release. # Having values injected from provider state callbacks (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. The following DSL methods all you to set an expression that will be parsed with the values returned from the provider states: For JSON bodies, use `valueFromProviderState`.<br/> For headers, use `headerFromProviderState`.<br/> For query parameters, use `queryParameterFromProviderState`.<br/> For paths, use `pathFromProviderState`. For example, assume that an API call is made to get the details of a user by ID. A provider state can be defined that specifies that the user must be exist, but the ID will be created when the user is created. So we can then define an expression for the path where the ID will be replaced with the value returned from the provider state callback. ```java .pathFromProviderState("/api/users/${id}", "/api/users/100") ``` You can also just use the key instead of an expression: ```java .valueFromProviderState('userId', 'userId', 100) // will look value using userId as the key ```

Group: au.com.dius Artifact: pact-jvm-consumer-junit5_2.12
Show all versions Show documentation Show source 
 

3 downloads
Artifact pact-jvm-consumer-junit5_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 2
Dependencies pact-jvm-consumer_2.12, junit-jupiter-api,
There are maybe transitive dependencies!

pact-jvm-consumer-junit5 from group au.com.dius (version 4.0.10)

pact-jvm-consumer-junit5 ======================== JUnit 5 support for Pact consumer tests ## Dependency The library is available on maven central using: * group-id = `au.com.dius` * artifact-id = `pact-jvm-consumer-junit5` * version-id = `4.0.x` ## Usage ### 1. Add the Pact consumer test extension to the test class. To write Pact consumer tests with JUnit 5, you need to add `@ExtendWith(PactConsumerTestExt)` to your test class. This replaces the `PactRunner` used for JUnit 4 tests. The rest of the test follows a similar pattern as for JUnit 4 tests. ```java @ExtendWith(PactConsumerTestExt.class) class ExampleJavaConsumerPactTest { ``` ### 2. create a method annotated with `@Pact` that returns the interactions for the test For each test (as with JUnit 4), you need to define a method annotated with the `@Pact` annotation that returns the interactions for the test. ```java @Pact(provider="ArticlesProvider", consumer="test_consumer") public RequestResponsePact createPact(PactDslWithProvider builder) { return builder .given("test state") .uponReceiving("ExampleJavaConsumerPactTest test interaction") .path("/articles.json") .method("GET") .willRespondWith() .status(200) .body("{\"responsetest\": true}") .toPact(); } ``` ### 3. Link the mock server with the interactions for the test with `@PactTestFor` Then the final step is to use the `@PactTestFor` annotation to tell the Pact extension how to setup the Pact test. You can either put this annotation on the test class, or on the test method. For examples see [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) and [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy). The `@PactTestFor` annotation allows you to control the mock server in the same way as the JUnit 4 `PactProviderRule`. It allows you to set the hostname to bind to (default is `localhost`) and the port (default is to use a random port). You can also set the Pact specification version to use (default is V3). ```java @ExtendWith(PactConsumerTestExt.class) @PactTestFor(providerName = "ArticlesProvider") public class ExampleJavaConsumerPactTest { ``` **NOTE on the hostname**: The mock server runs in the same JVM as the test, so the only valid values for hostname are: | hostname | result | | -------- | ------ | | `localhost` | binds to the address that localhost points to (normally the loopback adapter) | | `127.0.0.1` or `::1` | binds to the loopback adapter | | host name | binds to the default interface that the host machines DNS name resolves to | | `0.0.0.0` or `::` | binds to the all interfaces on the host machine | #### Matching the interactions by provider name If you set the `providerName` on the `@PactTestFor` annotation, then the first method with a `@Pact` annotation with the same provider name will be used. See [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) for an example. #### Matching the interactions by method name If you set the `pactMethod` on the `@PactTestFor` annotation, then the method with the provided name will be used (it still needs a `@Pact` annotation). See [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy) for an example. ### Injecting the mock server into the test You can get the mock server injected into the test method by adding a `MockServer` parameter to the test method. ```java @Test void test(MockServer mockServer) throws IOException { HttpResponse httpResponse = Request.Get(mockServer.getUrl() + "/articles.json").execute().returnResponse(); assertThat(httpResponse.getStatusLine().getStatusCode(), is(equalTo(200))); } ``` This helps with getting the base URL of the mock server, especially when a random port is used. ## Changing the directory pact files are written to By default, pact files are written to `target/pacts` (or `build/pacts` if you use Gradle), but this can be overwritten with the `pact.rootDir` system property. This property needs to be set on the test JVM as most build tools will fork a new JVM to run the tests. For Gradle, add this to your build.gradle: ```groovy test { systemProperties['pact.rootDir'] = "$buildDir/custom-pacts-directory" } ``` For maven, use the systemPropertyVariables configuration: ```xml <project> [...] <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.18</version> <configuration> <systemPropertyVariables> <pact.rootDir>some/other/directory</pact.rootDir> <buildDirectory>${project.build.directory}</buildDirectory> [...] </systemPropertyVariables> </configuration> </plugin> </plugins> </build> [...] </project> ``` For SBT: ```scala fork in Test := true, javaOptions in Test := Seq("-Dpact.rootDir=some/other/directory") ``` ### Using `@PactFolder` annotation You can override the directory the pacts are written in a test by adding the `@PactFolder` annotation to the test class. ## Forcing pact files to be overwritten (3.6.5+) By default, when the pact file is written, it will be merged with any existing pact file. To force the file to be overwritten, set the Java system property `pact.writer.overwrite` to `true`. ## Unsupported The current implementation does not support tests with multiple providers. This will be added in a later release. # Having values injected from provider state callbacks (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. The following DSL methods all you to set an expression that will be parsed with the values returned from the provider states: For JSON bodies, use `valueFromProviderState`.<br/> For headers, use `headerFromProviderState`.<br/> For query parameters, use `queryParameterFromProviderState`.<br/> For paths, use `pathFromProviderState`. For example, assume that an API call is made to get the details of a user by ID. A provider state can be defined that specifies that the user must be exist, but the ID will be created when the user is created. So we can then define an expression for the path where the ID will be replaced with the value returned from the provider state callback. ```java .pathFromProviderState("/api/users/${id}", "/api/users/100") ``` You can also just use the key instead of an expression: ```java .valueFromProviderState('userId', 'userId', 100) // will look value using userId as the key ```

Group: au.com.dius Artifact: pact-jvm-consumer-junit5
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-consumer-junit5
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 2
Dependencies junit-jupiter-api, pact-jvm-consumer,
There are maybe transitive dependencies!



Page 64 from 67 (items total 667)


© 2015 - 2024 Weber Informatics LLC | Privacy Policy