Download JAR files tagged by many with all dependencies
encryption-utils from group org.ow2.xlcloud (version 1.0.0)
Artifact encryption-utils
Group org.ow2.xlcloud
Version 1.0.0
Last update 12. May 2014
Organization not specified
URL Not specified
License not specified
Dependencies amount 2
Dependencies commons-lang, commons-codec,
There are maybe transitive dependencies!
Group org.ow2.xlcloud
Version 1.0.0
Last update 12. May 2014
Organization not specified
URL Not specified
License not specified
Dependencies amount 2
Dependencies commons-lang, commons-codec,
There are maybe transitive dependencies!
validation-utils from group org.ow2.xlcloud (version 1.0.0)
ssh-client from group org.ow2.xlcloud (version 1.0.0)
Artifact ssh-client
Group org.ow2.xlcloud
Version 1.0.0
Last update 12. May 2014
Organization not specified
URL Not specified
License not specified
Dependencies amount 5
Dependencies common-utils, jsch, commons-lang, commons-pool, commons-io,
There are maybe transitive dependencies!
Group org.ow2.xlcloud
Version 1.0.0
Last update 12. May 2014
Organization not specified
URL Not specified
License not specified
Dependencies amount 5
Dependencies common-utils, jsch, commons-lang, commons-pool, commons-io,
There are maybe transitive dependencies!
common-utils from group org.ow2.xlcloud (version 1.0.0)
Artifact common-utils
Group org.ow2.xlcloud
Version 1.0.0
Last update 12. May 2014
Organization not specified
URL Not specified
License not specified
Dependencies amount 2
Dependencies commons-lang, junit,
There are maybe transitive dependencies!
Group org.ow2.xlcloud
Version 1.0.0
Last update 12. May 2014
Organization not specified
URL Not specified
License not specified
Dependencies amount 2
Dependencies commons-lang, junit,
There are maybe transitive dependencies!
xlcloud from group org.ow2.xlcloud (version 1.0.0)
Group: org.ow2.xlcloud Artifact: xlcloud
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
chips-n-salsa from group org.cicirello (version 7.0.1)
Chips-n-Salsa is a Java library of customizable,
hybridizable, iterative, parallel, stochastic, and self-adaptive
local search algorithms. The library includes implementations of
several stochastic local search algorithms, including simulated
annealing, hill climbers, as well as constructive search algorithms
such as stochastic sampling. Chips-n-Salsa now also includes genetic
algorithms as well as evolutionary algorithms more generally. The
library very extensively supports simulated annealing. It includes
several classes for representing solutions to a variety of optimization
problems. For example, the library includes a BitVector class that
implements vectors of bits, as well as classes for representing
solutions to problems where we are searching for an optimal vector
of integers or reals. For each of the built-in representations, the
library provides the most common mutation operators for generating
random neighbors of candidate solutions, as well as common crossover
operators for use with evolutionary algorithms. Additionally, the
library provides extensive support for permutation optimization
problems, including implementations of many different mutation
operators for permutations, and utilizing the efficiently implemented
Permutation class of the JavaPermutationTools (JPT) library.
Chips-n-Salsa is customizable, making extensive use of Java's generic
types, enabling using the library to optimize other types of representations
beyond what is provided in the library. It is hybridizable, providing
support for integrating multiple forms of local search (e.g., using a hill
climber on a solution generated by simulated annealing), creating hybrid
mutation operators (e.g., local search using multiple mutation operators),
as well as support for running more than one type of search for the same
problem concurrently using multiple threads as a form of algorithm portfolio.
Chips-n-Salsa is iterative, with support for multistart metaheuristics,
including implementations of several restart schedules for varying the run
lengths across the restarts. It also supports parallel execution of multiple
instances of the same, or different, stochastic local search algorithms for
an instance of a problem to accelerate the search process. The library
supports self-adaptive search in a variety of ways, such as including
implementations of adaptive annealing schedules for simulated annealing,
such as the Modified Lam schedule, implementations of the simpler annealing
schedules but which self-tune the initial temperature and other parameters,
and restart schedules that adapt to run length.
0 downloads
Artifact chips-n-salsa
Group org.cicirello
Version 7.0.1
Last update 12. December 2024
Organization Cicirello.Org
URL https://chips-n-salsa.cicirello.org/
License GPL-3.0-or-later
Dependencies amount 3
Dependencies jpt, rho-mu, core,
There are maybe transitive dependencies!
Group org.cicirello
Version 7.0.1
Last update 12. December 2024
Organization Cicirello.Org
URL https://chips-n-salsa.cicirello.org/
License GPL-3.0-or-later
Dependencies amount 3
Dependencies jpt, rho-mu, core,
There are maybe transitive dependencies!
osgi-tests from group org.apache.axis2 (version 1.6.3)
Artifact osgi-tests
Group org.apache.axis2
Version 1.6.3
Last update 27. June 2015
Organization not specified
URL http://axis.apache.org/axis2/java/core/
License not specified
Dependencies amount 1
Dependencies axis2-testutils,
There are maybe transitive dependencies!
Group org.apache.axis2
Version 1.6.3
Last update 27. June 2015
Organization not specified
URL http://axis.apache.org/axis2/java/core/
License not specified
Dependencies amount 1
Dependencies axis2-testutils,
There are maybe transitive dependencies!
axis2-parent from group org.apache.axis2 (version 1.6.3)
Axis2 is an effort to re-design and totally re-implement both Axis/Java and
(eventually) Axis/C++ on a new architecture. Evolving from the now standard "handler chain"
model which Axis1 pioneered, Axis2 is developing a more flexible pipeline architecture which
can yet be managed and packaged in a more organized manner. This new design acknowledges the
maturing of the Web services space in terms of new protocols such as WS-ReliableMessaging,
WS-Security and WS-Addressing that are built on top of the base SOAP system. At the time
Axis1 was designed, while it was fully expected that other protocols such as
WS-ReliableMessaging would be built on top of it, there was not a proper extension
architecture defined to enable clean composition of such layers. Thus, one of the key
motivations for Axis2 is to provide a clean and simple environment for like Apache Sandesha
and Apache WSS4J to layer on top of the base SOAP system. Another driving force for Axis2 as
well as the move away from RPC oriented Web services towards more document-oriented, message
style asynchronous service interactions. The Axis2 project is centered on a new
representation for SOAP messages called AXIOM (AXIs Object Model). AXIOM consists of two
parts: a complete XML Infoset representation and a SOAP Infoset representation on top of
that. The XML Infoset representation provides a JDOM-like simple API but is built on a
deferred model via a StAX-based (Streaming API for XML) pull parsing API. A key feature of
AXIOM is that it allows one to stop building the XML tree and just access the pull stream
directly; thus enabling both maximum flexibility and maximum performance. This approach
allows us to support multiple levels of abstraction for consuming and offering Web services:
using plain AXIOM, using generated code and statically data-bound data types and so on. At
the time of Axis1's design, RPC-style, synchronous, request-response interactions were the
order of the day for Web services. Today service interactions are much more message
-oriented and exploit many different message exchange patterns. The Axis2 engine
architecture is careful to not build in any assumptions of request-response patterns to
ensure that it can be used easily to support arbitrary message exchange
patterns.
Group: org.apache.axis2 Artifact: axis2-parent
Show all versions
Show all versions
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact axis2-parent
Group org.apache.axis2
Version 1.6.3
Last update 27. June 2015
Organization not specified
URL http://axis.apache.org/axis2/java/core/
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
Group org.apache.axis2
Version 1.6.3
Last update 27. June 2015
Organization not specified
URL http://axis.apache.org/axis2/java/core/
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
pact-jvm-provider_2.12 from group au.com.dius (version 3.6.15)
Pact provider
=============
sub project of https://github.com/DiUS/pact-jvm
The pact provider is responsible for verifying that an API provider adheres to a number of pacts authored by its clients
This library provides the basic tools required to automate the process, and should be usable on its own in many instances.
Framework and build tool specific bindings will be provided in separate libraries that build on top of this core functionality.
### Provider State
Before each interaction is executed, the provider under test will have the opportunity to enter a state.
Generally the state maps to a set of fixture data for mocking out services that the provider is a consumer of (they will have their own pacts)
The pact framework will instruct the test server to enter that state by sending:
POST "${config.stateChangeUrl.url}/setup" { "state" : "${interaction.stateName}" }
### An example of running provider verification with junit
This example uses Groovy, JUnit 4 and Hamcrest matchers to run the provider verification.
As the provider service is a DropWizard application, it uses the DropwizardAppRule to startup the service before running any test.
**Warning:** It only grabs the first interaction from the pact file with the consumer, where there could be many. (This could possibly be solved with a parameterized test)
```groovy
class ReadmeExamplePactJVMProviderJUnitTest {
@ClassRule
public static TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>(
TestDropwizardApplication.class, ResourceHelpers.resourceFilePath("dropwizard/test-config.yaml"))
private static ProviderInfo serviceProvider
private static Pact<RequestResponseInteraction> testConsumerPact
private static ConsumerInfo consumer
@BeforeClass
static void setupProvider() {
serviceProvider = new ProviderInfo("Dropwizard App")
serviceProvider.setProtocol("http")
serviceProvider.setHost("localhost")
serviceProvider.setPort(8080)
serviceProvider.setPath("/")
consumer = new ConsumerInfo()
consumer.setName("test_consumer")
consumer.setPactSource(new UrlSource(
ReadmeExamplePactJVMProviderJUnitTest.getResource("/pacts/zoo_app-animal_service.json").toString()))
testConsumerPact = PactReader.loadPact(consumer.getPactSource()) as Pact<RequestResponseInteraction>
}
@Test
void runConsumerPacts() {
// grab the first interaction from the pact with consumer
Interaction interaction = testConsumerPact.interactions.get(0)
// setup the verifier
ProviderVerifier verifier = setupVerifier(interaction, serviceProvider, consumer)
// setup any provider state
// setup the client and interaction to fire against the provider
ProviderClient client = new ProviderClient(serviceProvider, new HttpClientFactory())
Map<String, Object> failures = new HashMap<>()
verifier.verifyResponseFromProvider(serviceProvider, interaction, interaction.getDescription(), failures, client)
if (!failures.isEmpty()) {
verifier.displayFailures(failures)
}
// Assert all good
assertThat(failures, is(empty()))
}
private ProviderVerifier setupVerifier(Interaction interaction, ProviderInfo provider, ConsumerInfo consumer) {
ProviderVerifier verifier = new ProviderVerifier()
verifier.initialiseReporters(provider)
verifier.reportVerificationForConsumer(consumer, provider)
if (!interaction.getProviderStates().isEmpty()) {
for (ProviderState providerState: interaction.getProviderStates()) {
verifier.reportStateForInteraction(providerState.getName(), provider, consumer, true)
}
}
verifier.reportInteractionDescription(interaction)
return verifier
}
}
```
### An example of running provider verification with spock
This example uses groovy and spock to run the provider verification.
Again the provider service is a DropWizard application, and is using the DropwizardAppRule to startup the service.
This example runs all interactions using spocks Unroll feature
```groovy
class ReadmeExamplePactJVMProviderSpockSpec extends Specification {
@ClassRule @Shared
TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>(TestDropwizardApplication,
ResourceHelpers.resourceFilePath('dropwizard/test-config.yaml'))
@Shared
ProviderInfo serviceProvider
ProviderVerifier verifier
def setupSpec() {
serviceProvider = new ProviderInfo('Dropwizard App')
serviceProvider.protocol = 'http'
serviceProvider.host = 'localhost'
serviceProvider.port = 8080
serviceProvider.path = '/'
serviceProvider.hasPactWith('zoo_app') {
pactSource = new FileSource(new File(ResourceHelpers.resourceFilePath('pacts/zoo_app-animal_service.json')))
}
}
def setup() {
verifier = new ProviderVerifier()
}
def cleanup() {
// cleanup provider state
// ie. db.truncateAllTables()
}
def cleanupSpec() {
// cleanup provider
}
@Unroll
def "Provider Pact - With Consumer #consumer"() {
expect:
verifyConsumerPact(consumer).empty
where:
consumer << serviceProvider.consumers
}
private Map verifyConsumerPact(ConsumerInfo consumer) {
Map failures = [:]
verifier.initialiseReporters(serviceProvider)
verifier.runVerificationForConsumer(failures, serviceProvider, consumer)
if (!failures.empty) {
verifier.displayFailures(failures)
}
failures
}
}
```
3 downloads
Artifact pact-jvm-provider_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies pact-jvm-model, pact-jvm-pact-broker, pact-jvm-matchers_2.12, commons-io, jansi, httpclient, reflections, scala-java8-compat_2.12,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies pact-jvm-model, pact-jvm-pact-broker, pact-jvm-matchers_2.12, commons-io, jansi, httpclient, reflections, scala-java8-compat_2.12,
There are maybe transitive dependencies!
pact-jvm-provider from group au.com.dius (version 4.0.10)
Pact provider
=============
sub project of https://github.com/DiUS/pact-jvm
The pact provider is responsible for verifying that an API provider adheres to a number of pacts authored by its clients
This library provides the basic tools required to automate the process, and should be usable on its own in many instances.
Framework and build tool specific bindings will be provided in separate libraries that build on top of this core functionality.
### Provider State
Before each interaction is executed, the provider under test will have the opportunity to enter a state.
Generally the state maps to a set of fixture data for mocking out services that the provider is a consumer of (they will have their own pacts)
The pact framework will instruct the test server to enter that state by sending:
POST "${config.stateChangeUrl.url}/setup" { "state" : "${interaction.stateName}" }
### An example of running provider verification with junit
This example uses Groovy, JUnit 4 and Hamcrest matchers to run the provider verification.
As the provider service is a DropWizard application, it uses the DropwizardAppRule to startup the service before running any test.
**Warning:** It only grabs the first interaction from the pact file with the consumer, where there could be many. (This could possibly be solved with a parameterized test)
```groovy
class ReadmeExamplePactJVMProviderJUnitTest {
@ClassRule
public static final TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>(
TestDropwizardApplication, ResourceHelpers.resourceFilePath('dropwizard/test-config.yaml'))
private static ProviderInfo serviceProvider
private static Pact<RequestResponseInteraction> testConsumerPact
private static ConsumerInfo consumer
@BeforeClass
static void setupProvider() {
serviceProvider = new ProviderInfo('Dropwizard App')
serviceProvider.setProtocol('http')
serviceProvider.setHost('localhost')
serviceProvider.setPort(8080)
serviceProvider.setPath('/')
consumer = new ConsumerInfo()
consumer.setName('test_consumer')
consumer.setPactSource(new UrlSource(
ReadmeExamplePactJVMProviderJUnitTest.getResource('/pacts/zoo_app-animal_service.json').toString()))
testConsumerPact = DefaultPactReader.INSTANCE.loadPact(consumer.getPactSource()) as Pact<RequestResponseInteraction>
}
@Test
void runConsumerPacts() {
// grab the first interaction from the pact with consumer
Interaction interaction = testConsumerPact.interactions.get(0)
// setup the verifier
ProviderVerifier verifier = setupVerifier(interaction, serviceProvider, consumer)
// setup any provider state
// setup the client and interaction to fire against the provider
ProviderClient client = new ProviderClient(serviceProvider, new HttpClientFactory())
Map<String, Object> failures = new HashMap<>()
verifier.verifyResponseFromProvider(serviceProvider, interaction, interaction.getDescription(), failures, client)
// normally assert all good, but in this example it will fail
assertThat(failures, is(not(empty())))
verifier.displayFailures(failures)
}
private ProviderVerifier setupVerifier(Interaction interaction, ProviderInfo provider, ConsumerInfo consumer) {
ProviderVerifier verifier = new ProviderVerifier()
verifier.initialiseReporters(provider)
verifier.reportVerificationForConsumer(consumer, provider, new UrlSource('http://example.example'))
if (!interaction.getProviderStates().isEmpty()) {
for (ProviderState providerState: interaction.getProviderStates()) {
verifier.reportStateForInteraction(providerState.getName(), provider, consumer, true)
}
}
verifier.reportInteractionDescription(interaction)
return verifier
}
}
```
### An example of running provider verification with spock
This example uses groovy and spock to run the provider verification.
Again the provider service is a DropWizard application, and is using the DropwizardAppRule to startup the service.
This example runs all interactions using spocks Unroll feature
```groovy
class ReadmeExamplePactJVMProviderSpockSpec extends Specification {
@ClassRule @Shared
TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>(TestDropwizardApplication,
ResourceHelpers.resourceFilePath('dropwizard/test-config.yaml'))
@Shared
ProviderInfo serviceProvider
ProviderVerifier verifier
def setupSpec() {
serviceProvider = new ProviderInfo('Dropwizard App')
serviceProvider.protocol = 'http'
serviceProvider.host = 'localhost'
serviceProvider.port = 8080
serviceProvider.path = '/'
serviceProvider.hasPactWith('zoo_app') { consumer ->
consumer.pactSource = new FileSource(new File(ResourceHelpers.resourceFilePath('pacts/zoo_app-animal_service.json')))
}
}
def setup() {
verifier = new ProviderVerifier()
}
def cleanup() {
// cleanup provider state
// ie. db.truncateAllTables()
}
def cleanupSpec() {
// cleanup provider
}
@Unroll
def "Provider Pact - With Consumer #consumer"() {
expect:
!verifyConsumerPact(consumer).empty
where:
consumer << serviceProvider.consumers
}
private Map verifyConsumerPact(ConsumerInfo consumer) {
Map failures = [:]
verifier.initialiseReporters(serviceProvider)
verifier.runVerificationForConsumer(failures, serviceProvider, consumer)
if (!failures.empty) {
verifier.displayFailures(failures)
}
failures
}
}
```
0 downloads
Artifact pact-jvm-provider
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies commons-io, jansi, httpclient, pact-jvm-core-model, pact-jvm-core-pact-broker, pact-jvm-core-matchers, pact-jvm-core-support, arrow-core-extensions,
There are maybe transitive dependencies!
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies commons-io, jansi, httpclient, pact-jvm-core-model, pact-jvm-core-pact-broker, pact-jvm-core-matchers, pact-jvm-core-support, arrow-core-extensions,
There are maybe transitive dependencies!
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
Page 115 from 118 (items total 1172)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy