Download JAR files tagged by maximization with all dependencies
EMImputation from group nz.ac.waikato.cms.weka (version 1.0.2)
Replaces missing numeric values using Expectation Maximization with a multivariate normal model. Described in " Schafer, J.L. Analysis of Incomplete Multivariate Data, New York: Chapman and Hall, 1997."
Group: nz.ac.waikato.cms.weka Artifact: EMImputation
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact EMImputation
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/EMImputation
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/EMImputation
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
mrglvq from group de.cit-ec.ml (version 0.1.0)
This project contains a Java implementation of median relational generalized learning vector
quantization as proposed by Nebel, Hammer, Frohberg, and Villmann
(2015, doi:10.1016/j.neucom.2014.12.096). Given a matrix of pairwise distances D and a
vector of labels Y it identifies prototypical data points (i.e. rows of D) which help
to classify the data set using a simple nearest neighbor rule. In particular, the algorithm
optimizes the generalized learning vector quantization cost function (Sato and Yamada, 1995)
via an expectation maximization scheme where in each iteration one prototype 'jumps' to
another data point in order to improve the cost function. If the cost function can not be
improved anymore for any of the data points, the algorithm terminates.
Artifact mrglvq
Group de.cit-ec.ml
Version 0.1.0
Last update 27. January 2018
Organization not specified
URL https://gitlab.ub.uni-bielefeld.de/bpaassen/median_relational_glvq
License The GNU General Public License, Version 3
Dependencies amount 1
Dependencies rng,
There are maybe transitive dependencies!
Group de.cit-ec.ml
Version 0.1.0
Last update 27. January 2018
Organization not specified
URL https://gitlab.ub.uni-bielefeld.de/bpaassen/median_relational_glvq
License The GNU General Public License, Version 3
Dependencies amount 1
Dependencies rng,
There are maybe transitive dependencies!
sequentialInformationalBottleneckClusterer from group nz.ac.waikato.cms.weka (version 1.0.2)
Cluster data using the sequential information bottleneck algorithm.
Note: only hard clustering scheme is supported. sIB assign for each instance the cluster that have the minimum cost/distance to the instance. The trade-off beta is set to infinite so 1/beta is zero.
For more information, see:
Noam Slonim, Nir Friedman, Naftali Tishby: Unsupervised document classification using sequential information maximization. In: Proceedings of the 25th International ACM SIGIR Conference on Research and Development in Information Retrieval, 129-136, 2002.
Group: nz.ac.waikato.cms.weka Artifact: sequentialInformationalBottleneckClusterer
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact sequentialInformationalBottleneckClusterer
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/sequentialInformationalBottleneckClusterer
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/sequentialInformationalBottleneckClusterer
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Page 1 from 1 (items total 3)