All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download JAR files tagged by multivariate with all dependencies

Search JAR files by class name

datagenerator_2.12 from group io.github.edouardfouche (version 0.1.1)

A bunch of little data generators to simulate multivariate dependencies.

Group: io.github.edouardfouche Artifact: datagenerator_2.12
Show all versions Show documentation Show source 
 

0 downloads
Artifact datagenerator_2.12
Group io.github.edouardfouche
Version 0.1.1
Last update 28. September 2019
Organization edouardfouche
URL https://github.com/edouardfouche/DataGenerator
License AGPLv3
Dependencies amount 6
Dependencies scala-library, breeze_2.12, jfreechart, jzy3d-api, logback-classic, scala-logging_2.12,
There are maybe transitive dependencies!

datagenerator_2.11 from group io.github.edouardfouche (version 0.1.0)

A bunch of little data generators to simulate multivariate dependencies.

Group: io.github.edouardfouche Artifact: datagenerator_2.11
Show documentation Show source 
 

0 downloads
Artifact datagenerator_2.11
Group io.github.edouardfouche
Version 0.1.0
Last update 13. March 2019
Organization edouardfouche
URL https://github.com/edouardfouche/DataGenerator
License AGPLv3
Dependencies amount 6
Dependencies scala-library, breeze_2.11, jfreechart, jzy3d-api, logback-classic, scala-logging_2.11,
There are maybe transitive dependencies!

CorrelationDetective from group io.github.correlationdetective (version 1.0.1)

Correlation Detective is a fast and scalable family of algorithms for finding interesting multivariate correlations in vector datasets. Release notes: - 1.0.1: Solved issue with running multiple CD jobs sequentially.

Group: io.github.correlationdetective Artifact: CorrelationDetective
Show all versions Show documentation Show source 
 

0 downloads
Artifact CorrelationDetective
Group io.github.correlationdetective
Version 1.0.1
Last update 29. February 2024
Organization not specified
URL https://correlationdetective.com/
License Apache License, Version 2.0
Dependencies amount 7
Dependencies commons-lang3, commons-math3, lombok, jama, guava, gson, minio,
There are maybe transitive dependencies!

uamds-core from group com.github.hageldave.uamds (version 0.1.0)

Java implementation of Uncertainty-Aware Multidimensional Scaling (UAMDS). UAMDS is a dimensionality reduction algorithm for sets of multivariate normal distributions. (Related publication DOI: 10.1109/TVCG.2022.3209420)

Group: com.github.hageldave.uamds Artifact: uamds-core
Show all versions Show documentation Show source 
 

0 downloads
Artifact uamds-core
Group com.github.hageldave.uamds
Version 0.1.0
Last update 16. March 2023
Organization not specified
URL https://github.com/hageldave/uamds
License The MIT License (MIT)
Dependencies amount 1
Dependencies optisled,
There are maybe transitive dependencies!

EMImputation from group nz.ac.waikato.cms.weka (version 1.0.2)

Replaces missing numeric values using Expectation Maximization with a multivariate normal model. Described in " Schafer, J.L. Analysis of Incomplete Multivariate Data, New York: Chapman and Hall, 1997."

Group: nz.ac.waikato.cms.weka Artifact: EMImputation
Show all versions Show documentation Show source 
 

0 downloads
Artifact EMImputation
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/EMImputation
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!

RBFNetwork from group nz.ac.waikato.cms.weka (version 1.0.8)

RBFNetwork implements a normalized Gaussian radial basisbasis function network. It uses the k-means clustering algorithm to provide the basis functions and learns either a logistic regression (discrete class problems) or linear regression (numeric class problems) on top of that. Symmetric multivariate Gaussians are fit to the data from each cluster. If the class is nominal it uses the given number of clusters per class. RBFRegressor implements radial basis function networks for regression, trained in a fully supervised manner using WEKA's Optimization class by minimizing squared error with the BFGS method. It is possible to use conjugate gradient descent rather than BFGS updates, which is faster for cases with many parameters, and to use normalized basis functions instead of unnormalized ones.

Group: nz.ac.waikato.cms.weka Artifact: RBFNetwork
Show all versions Show documentation Show source 
 

11 downloads
Artifact RBFNetwork
Group nz.ac.waikato.cms.weka
Version 1.0.8
Last update 16. January 2015
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/RBFNetwork
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!



Page 1 from 1 (items total 6)


© 2015 - 2024 Weber Informatics LLC | Privacy Policy