All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download JAR files tagged by normal with all dependencies

Search JAR files by class name

scala-tptp-parser_2.13 from group io.github.leoprover (version 1.7.1)

scala-tptp-parser is a library for parsing the input languages of the TPTP infrastructure for knowledge representation and reasoning. The package contains a data structure for the abstract syntax tree (AST) of the parsed input as well as the parser for the different language of the TPTP, see http://tptp.org for details. In particular, parser are available for: - THF (TH0/TH1): Monomorphic and polymorphic higher-order logic, - TFF (TF0/TF1): Monomorphic and polymorphic typed first-order logic, including extended TFF (TFX), - FOF: Untyped first-order logic, - TCF: Typed clause-normal form, - CNF: (Untyped) clause-normal form, and - TPI: TPTP Process Instruction language. The parser was initially based on v7.4.0.3 of the TPTP syntax BNF (http://tptp.org/TPTP/SyntaxBNF.html), but is continuously updated to keep track of TPTP language updates.

Group: io.github.leoprover Artifact: scala-tptp-parser_2.13
Show all versions Show documentation Show source 
 

0 downloads
Artifact scala-tptp-parser_2.13
Group io.github.leoprover
Version 1.7.1
Last update 25. March 2023
Organization io.github.leoprover
URL https://github.com/leoprover/scala-tptp-parser
License MIT
Dependencies amount 1
Dependencies scala-library,
There are maybe transitive dependencies!

classdep from group au.net.zeus.jgdms.tools (version 3.1.0)

Tool used to analyze a set of classes and determine on what other classes they directly or indirectly depend. Typically this tool is used to compute the necessary and sufficient set of classes to include in a JAR file, for use in the class path of a client or service, or for use in the codebase of a client or service. The tool starts with a set of "root" classes and recursively computes a dependency graph, finding all of the classes referenced directly by the root classes, finding all of the classes referenced in turn by those classes, and so on, until no new classes are found or until classes that are not of interest are found. The normal output of the tool is a list of all of the classes in the dependency graph. The output from this command can be used as input to the jar tool, to create a JAR file containing precisely those classes.

Group: au.net.zeus.jgdms.tools Artifact: classdep
Show all versions Show documentation Show source 
 

0 downloads
Artifact classdep
Group au.net.zeus.jgdms.tools
Version 3.1.0
Last update 04. January 2019
Organization not specified
URL Not specified
License not specified
Dependencies amount 2
Dependencies asm, asm-commons,
There are maybe transitive dependencies!

impex-legacy-bundle from group org.kuali.db.impex (version 1.0.0)

This project creates a bundle of the Impex legacy tool that is decoupled from Subversion. It creates a jar file that has the exact same binaries, source, directory structure, and layout as the Impex contained inside Subversion. Since it is published as a versioned jar file, it can be referenced in other processes (like the Rice binary release process) without those processes needing the ability to connect back to Subversion to check out the tool. Processes that need access to the legacy Impex tool can thus express a normal maven dependency in order to obtain it.

Group: org.kuali.db.impex Artifact: impex-legacy-bundle
Show source 
 

0 downloads
Artifact impex-legacy-bundle
Group org.kuali.db.impex
Version 1.0.0
Last update 06. November 2011
Organization not specified
URL Not specified
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

excalibur-monitor from group org.apache.excalibur.components (version 2.2.1)

Avalon Excalibur's resource management code allows you to be notified when a resource has changed. There are two methods of resource management: active and passive. Passive resource management acts as a holder for resources, and after the resource has been modified through it's normal API, notification goes to all listeners. Active resource management does the same, but it also polls the resources periodically to see if the resource was modified through an external method. Active resource management is perfect for monitoring files because they can be modified by external programs, and your program will be notified when the change occurs instead of constantly polling it.

Group: org.apache.excalibur.components Artifact: excalibur-monitor
Show documentation Show source 
 

0 downloads
Artifact excalibur-monitor
Group org.apache.excalibur.components
Version 2.2.1
Last update 15. February 2007
Organization not specified
URL Not specified
License not specified
Dependencies amount 2
Dependencies avalon-framework-api, excalibur-sourceresolve,
There are maybe transitive dependencies!

r6-generator from group io.github.terminological (version 0.5.6)

R can use RJava or jsr223 to communicate with java. R also has a class system called R6. If you want to use a java library with native rJava or jsr223 in R there is potentially a lot of glue code needed, and R library specific packaging configuration required. However if you don't mind writing an R-centric API in Java you can generate all of this glue code using a few java annotations and the normal javadoc annotations. This plugin aims to provide an annotation processor that writes that glue code and creates a fairly transparent connection between Java code and R code, with a minimum of hard work. The focus of this is streamlining the creation of R libraries by Java developers, rather than allowing access to arbitrary Java code from R. The ultimate aim of this plugin to allow java developers to provide simple APIs for their libraries, package their library using Maven, push it to github and for that to become seamlessly available as an R library, with a minimal amount of fuss. A focus is on trying to produce CI ready libraries tested with Github workflows and ready for CRAN submission.

Group: io.github.terminological Artifact: r6-generator
Show all versions 
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact r6-generator
Group io.github.terminological
Version 0.5.6
Last update 26. September 2022
Organization not specified
URL https://github.com/terminological/r6-generator
License MIT License
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

statistics from group de.xypron.statistics (version 1.0.9)

Xypron Statistics is a Java library which was developped with supply chain simulation in mind. The normal, the exponential and the gamma distribution have been included. Methods to calculate fill rate and order rate service levels as well as safety factors are provided. The Mersenne Twister algorithm is used to provide high quality random number generation. Some functions for the gamma distribution where adopted from http://www.ssfnet.org/download/ssfnet_raceway-2.0.tar.gz. For these the following applies: Copyright 1999 CERN - European Organization for Nuclear Research. Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. CERN makes no representations about the suitability of this software for any purpose. It is provided "as is" without expressed or implied warranty.

Group: de.xypron.statistics Artifact: statistics
Show all versions Show documentation Show source 
 

0 downloads
Artifact statistics
Group de.xypron.statistics
Version 1.0.9
Last update 22. February 2014
Organization not specified
URL http://www.xypron.de/projects/statistics/
License Apache 2
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

pact-jvm-provider-lein_2.12 from group au.com.dius (version 3.6.15)

# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+] Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all configured pacts against your provider. ## To Use It ### 1. Add the plugin to your project plugins, preferably in it's own profile. ```clojure :profiles { :pact { :plugins [[au.com.dius/pact-jvm-provider-lein_2.11 "3.2.11" :exclusions [commons-logging]]] :dependencies [[ch.qos.logback/logback-core "1.1.3"] [ch.qos.logback/logback-classic "1.1.3"] [org.apache.httpcomponents/httpclient "4.4.1"]] }}} ``` ### 2. Define the pacts between your consumers and providers You define all the providers and consumers within the `:pact` configuration element of your project. ```clojure :pact { :service-providers { ; You can define as many as you need, but each must have a unique name :provider1 { ; All the provider properties are optional, and have sensible defaults (shown below) :protocol "http" :host "localhost" :port 8080 :path "/" :has-pact-with { ; Again, you can define as many consumers for each provider as you need, but each must have a unique name :consumer1 { ; pact file can be either a path or an URL :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ### 3. Execute `lein with-profile pact pact-verify` You will have to have your provider running for this to pass. ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `:insecure true` on the provider. ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :insecure true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :trust-store "relative/path/to/trustStore.jks" :trust-store-password "changeme" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` `:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest object as a parameter. ```clojure :pact { :service-providers { :provider1 { ; function that adds an Authorization header to each request :request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...") :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`. The function will receive the provider info as a parameter. ## Turning off URL decoding of the paths in the pact file [version 3.3.3+] By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Plugin Properties The following plugin options can be specified on the command line: |Property|Description| |--------|-----------| |:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]| |:pact.filter.consumers|Comma seperated list of consumer names to verify| |:pact.filter.description|Only verify interactions whose description match the provided regular expression| |:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| |:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]| |:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'| Example, to run verification only for a particular consumer: ``` $ lein with-profile pact pact-verify :pact.filter.consumers=:consumer2 ``` ## Provider States For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body` controls if the state is passed in the request body or as a query parameter. These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given. ```clojure :pact { :service-providers { :provider1 { :state-change-url "http://localhost:8080/tasks/pactStateChange" :state-change-uses-body false ; defaults to true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as JSON in the body of the request. If it is set to false, it will passed as a query parameter. As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made. #### Returning values that can be injected (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/${id}' for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body. ## Filtering the interactions that are verified You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`. Adding `:pact.filter.consumers=:consumer1,:consumer2` to the command line will only run the pact files for those consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a provider state. ## Starting and shutting down your provider For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks together. So, by creating a `start-app` and `terminate-app` alias, you could so something like: $ lein with-profile pact do start-app, pact-verify, terminate-app However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task` and `:terminate-provider-task` on the provider. ```clojure :aliases {"start-app" ^{:doc "Starts the app"} ["tasks to start app ..."] ; insert tasks to start the app here "terminate-app" ^{:doc "Kills the app"} ["tasks to terminate app ..."] ; insert tasks to stop the app here } :pact { :service-providers { :provider1 { :start-provider-task "start-app" :terminate-provider-task "terminate-app" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` Then you can just run: $ lein with-profile pact pact-verify and the `start-app` and `terminate-app` tasks will run before and after the provider verification. ## Specifying the provider hostname at runtime [3.0.4+] If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or AWS instance), you can give an anonymous function as the provider host that returns the host name. The function will receive the provider information as a parameter. ```clojure :pact { :service-providers { :provider1 { :host #(calculate-host-name %) :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ```

Group: au.com.dius Artifact: pact-jvm-provider-lein_2.12
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-lein_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies pact-jvm-provider_2.12, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!

pact-jvm-provider-lein from group au.com.dius (version 4.0.10)

# Leiningen plugin to verify a provider Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all configured pacts against your provider. ## To Use It ### 1. Add the plugin to your project plugins, preferably in it's own profile. ```clojure :profiles { :pact { :plugins [[au.com.dius/pact-jvm-provider-lein "4.0.0" :exclusions [commons-logging]]] :dependencies [[ch.qos.logback/logback-core "1.1.3"] [ch.qos.logback/logback-classic "1.1.3"] [org.apache.httpcomponents/httpclient "4.4.1"]] }}} ``` ### 2. Define the pacts between your consumers and providers You define all the providers and consumers within the `:pact` configuration element of your project. ```clojure :pact { :service-providers { ; You can define as many as you need, but each must have a unique name :provider1 { ; All the provider properties are optional, and have sensible defaults (shown below) :protocol "http" :host "localhost" :port 8080 :path "/" :has-pact-with { ; Again, you can define as many consumers for each provider as you need, but each must have a unique name :consumer1 { ; pact file can be either a path or an URL :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ### 3. Execute `lein with-profile pact pact-verify` You will have to have your provider running for this to pass. ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `:insecure true` on the provider. ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :insecure true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :trust-store "relative/path/to/trustStore.jks" :trust-store-password "changeme" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` `:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest object as a parameter. ```clojure :pact { :service-providers { :provider1 { ; function that adds an Authorization header to each request :request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...") :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`. The function will receive the provider info as a parameter. ## Turning off URL decoding of the paths in the pact file By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Plugin Properties The following plugin options can be specified on the command line: |Property|Description| |--------|-----------| |:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]| |:pact.filter.consumers|Comma seperated list of consumer names to verify| |:pact.filter.description|Only verify interactions whose description match the provided regular expression| |:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| |:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]| |:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'| Example, to run verification only for a particular consumer: ``` $ lein with-profile pact pact-verify :pact.filter.consumers=:consumer2 ``` ## Provider States For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body` controls if the state is passed in the request body or as a query parameter. These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given. ```clojure :pact { :service-providers { :provider1 { :state-change-url "http://localhost:8080/tasks/pactStateChange" :state-change-uses-body false ; defaults to true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as JSON in the body of the request. If it is set to false, it will passed as a query parameter. As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made. #### Returning values that can be injected (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/${id}' for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body. ## Filtering the interactions that are verified You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`. Adding `:pact.filter.consumers=:consumer1,:consumer2` to the command line will only run the pact files for those consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a provider state. ## Starting and shutting down your provider For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks together. So, by creating a `start-app` and `terminate-app` alias, you could so something like: $ lein with-profile pact do start-app, pact-verify, terminate-app However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task` and `:terminate-provider-task` on the provider. ```clojure :aliases {"start-app" ^{:doc "Starts the app"} ["tasks to start app ..."] ; insert tasks to start the app here "terminate-app" ^{:doc "Kills the app"} ["tasks to terminate app ..."] ; insert tasks to stop the app here } :pact { :service-providers { :provider1 { :start-provider-task "start-app" :terminate-provider-task "terminate-app" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` Then you can just run: $ lein with-profile pact pact-verify and the `start-app` and `terminate-app` tasks will run before and after the provider verification. ## Specifying the provider hostname at runtime If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or AWS instance), you can give an anonymous function as the provider host that returns the host name. The function will receive the provider information as a parameter. ```clojure :pact { :service-providers { :provider1 { :host #(calculate-host-name %) :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ```

Group: au.com.dius Artifact: pact-jvm-provider-lein
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-lein
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 10
Dependencies pact-jvm-provider, clojure, core.match, leiningen-core, maven-aether-provider, aether-connector-file, aether-connector-wagon, httpclient, jansi, groovy,
There are maybe transitive dependencies!

pact-jvm-provider-lein_2.11 from group au.com.dius (version 3.5.24)

# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+] Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all configured pacts against your provider. ## To Use It ### 1. Add the plugin to your project plugins, preferably in it's own profile. ```clojure :profiles { :pact { :plugins [[au.com.dius/pact-jvm-provider-lein_2.11 "3.2.11" :exclusions [commons-logging]]] :dependencies [[ch.qos.logback/logback-core "1.1.3"] [ch.qos.logback/logback-classic "1.1.3"] [org.apache.httpcomponents/httpclient "4.4.1"]] }}} ``` ### 2. Define the pacts between your consumers and providers You define all the providers and consumers within the `:pact` configuration element of your project. ```clojure :pact { :service-providers { ; You can define as many as you need, but each must have a unique name :provider1 { ; All the provider properties are optional, and have sensible defaults (shown below) :protocol "http" :host "localhost" :port 8080 :path "/" :has-pact-with { ; Again, you can define as many consumers for each provider as you need, but each must have a unique name :consumer1 { ; pact file can be either a path or an URL :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ### 3. Execute `lein with-profile pact pact-verify` You will have to have your provider running for this to pass. ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `:insecure true` on the provider. ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :insecure true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :trust-store "relative/path/to/trustStore.jks" :trust-store-password "changeme" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` `:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest object as a parameter. ```clojure :pact { :service-providers { :provider1 { ; function that adds an Authorization header to each request :request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...") :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`. The function will receive the provider info as a parameter. ## Turning off URL decoding of the paths in the pact file [version 3.3.3+] By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Plugin Properties The following plugin options can be specified on the command line: |Property|Description| |--------|-----------| |:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]| |:pact.filter.consumers|Comma seperated list of consumer names to verify| |:pact.filter.description|Only verify interactions whose description match the provided regular expression| |:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| |:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]| |:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'| Example, to run verification only for a particular consumer: ``` $ lein with-profile pact pact-verify :pact.filter.consumers=consumer2 ``` ## Provider States For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body` controls if the state is passed in the request body or as a query parameter. These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given. ```clojure :pact { :service-providers { :provider1 { :state-change-url "http://localhost:8080/tasks/pactStateChange" :state-change-uses-body false ; defaults to true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as JSON in the body of the request. If it is set to false, it will passed as a query parameter. As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made. ## Filtering the interactions that are verified You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`. Adding `:pact.filter.consumers=consumer1,consumer2` to the command line will only run the pact files for those consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a provider state. ## Starting and shutting down your provider For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks together. So, by creating a `start-app` and `terminate-app` alias, you could so something like: $ lein with-profile pact do start-app, pact-verify, terminate-app However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task` and `:terminate-provider-task` on the provider. ```clojure :aliases {"start-app" ^{:doc "Starts the app"} ["tasks to start app ..."] ; insert tasks to start the app here "terminate-app" ^{:doc "Kills the app"} ["tasks to terminate app ..."] ; insert tasks to stop the app here } :pact { :service-providers { :provider1 { :start-provider-task "start-app" :terminate-provider-task "terminate-app" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` Then you can just run: $ lein with-profile pact pact-verify and the `start-app` and `terminate-app` tasks will run before and after the provider verification. ## Specifying the provider hostname at runtime [3.0.4+] If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or AWS instance), you can give an anonymous function as the provider host that returns the host name. The function will receive the provider information as a parameter. ```clojure :pact { :service-providers { :provider1 { :host #(calculate-host-name %) :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ```

Group: au.com.dius Artifact: pact-jvm-provider-lein_2.11
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-lein_2.11
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 15
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-provider_2.11, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!

pact-jvm-provider-lein_2.10 from group au.com.dius (version 2.4.20)

# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+] Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all configured pacts against your provider. ## To Use It ### 1. Add the plugin to your project plugins, preferably in it's own profile. ```clojure :profiles { :pact { :plugins [[au.com.dius/pact-jvm-provider-lein_2.11 "3.0.3" :exclusions [commons-logging]]] :dependencies [[ch.qos.logback/logback-core "1.1.3"] [ch.qos.logback/logback-classic "1.1.3"] [org.apache.httpcomponents/httpclient "4.4.1"]] }}} ``` ### 2. Define the pacts between your consumers and providers You define all the providers and consumers within the `:pact` configuration element of your project. ```clojure :pact { :service-providers { ; You can define as many as you need, but each must have a unique name :provider1 { ; All the provider properties are optional, and have sensible defaults (shown below) :protocol "http" :host "localhost" :port 8080 :path "/" :has-pact-with { ; Again, you can define as many consumers for each provider as you need, but each must have a unique name :consumer1 { ; pact file can be either a path or an URL :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ### 3. Execute `lein with-profile pact pact-verify` You will have to have your provider running for this to pass. ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `:insecure true` on the provider. ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :insecure true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :trust-store "relative/path/to/trustStore.jks" :trust-store-password "changeme" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` `:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest object as a parameter. ```clojure :pact { :service-providers { :provider1 { ; function that adds an Authorization header to each request :request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...") :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`. The function will receive the provider info as a parameter. ## Turning off URL decoding of the paths in the pact file [version 3.3.3+] By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Plugin Properties The following plugin options can be specified on the command line: |Property|Description| |--------|-----------| |:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]| |:pact.filter.consumers|Comma seperated list of consumer names to verify| |:pact.filter.description|Only verify interactions whose description match the provided regular expression| |:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| Example, to run verification only for a particular consumer: ``` $ lein with-profile pact pact-verify :pact.filter.consumers=consumer2 ``` ## Provider States For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body` controls if the state is passed in the request body or as a query parameter. These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given. ```clojure :pact { :service-providers { :provider1 { :state-change-url "http://localhost:8080/tasks/pactStateChange" :state-change-uses-body false ; defaults to true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as JSON in the body of the request. If it is set to false, it will passed as a query parameter. As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made. ## Filtering the interactions that are verified You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`. Adding `:pact.filter.consumers=consumer1,consumer2` to the command line will only run the pact files for those consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a provider state. ## Starting and shutting down your provider For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks together. So, by creating a `start-app` and `terminate-app` alias, you could so something like: $ lein with-profile pact do start-app, pact-verify, terminate-app However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task` and `:terminate-provider-task` on the provider. ```clojure :aliases {"start-app" ^{:doc "Starts the app"} ["tasks to start app ..."] ; insert tasks to start the app here "terminate-app" ^{:doc "Kills the app"} ["tasks to terminate app ..."] ; insert tasks to stop the app here } :pact { :service-providers { :provider1 { :start-provider-task "start-app" :terminate-provider-task "terminate-app" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` Then you can just run: $ lein with-profile pact pact-verify and the `start-app` and `terminate-app` tasks will run before and after the provider verification. ## Specifying the provider hostname at runtime [3.0.4+] If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or AWS instance), you can give an anonymous function as the provider host that returns the host name. The function will receive the provider information as a parameter. ```clojure :pact { :service-providers { :provider1 { :host #(calculate-host-name %) :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ```

Group: au.com.dius Artifact: pact-jvm-provider-lein_2.10
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-lein_2.10
Group au.com.dius
Version 2.4.20
Last update 14. April 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 10
Dependencies slf4j-api, scala-library, pact-jvm-provider_2.10, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!



Page 8 from 10 (items total 92)


© 2015 - 2024 Weber Informatics LLC | Privacy Policy