Download JAR files tagged by pacts with all dependencies
pact-jvm-provider-junit5 from group au.com.dius (version 4.0.10)
# Pact Junit 5 Extension
## Overview
For writing Pact verification tests with JUnit 5, there is an JUnit 5 Invocation Context Provider that you can use with
the `@TestTemplate` annotation. This will generate a test for each interaction found for the pact files for the provider.
To use it, add the `@Provider` and one of the pact source annotations to your test class (as per a JUnit 4 test), then
add a method annotated with `@TestTemplate` and `@ExtendWith(PactVerificationInvocationContextProvider.class)` that
takes a `PactVerificationContext` parameter. You will need to call `verifyInteraction()` on the context parameter in
your test template method.
For example:
```java
@Provider("myAwesomeService")
@PactFolder("pacts")
public class ContractVerificationTest {
@TestTemplate
@ExtendWith(PactVerificationInvocationContextProvider.class)
void pactVerificationTestTemplate(PactVerificationContext context) {
context.verifyInteraction();
}
}
```
For details on the provider and pact source annotations, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs.
## Test target
You can set the test target (the object that defines the target of the test, which should point to your provider) on the
`PactVerificationContext`, but you need to do this in a before test method (annotated with `@BeforeEach`). There are three
different test targets you can use: `HttpTestTarget`, `HttpsTestTarget` and `AmpqTestTarget`.
For example:
```java
@BeforeEach
void before(PactVerificationContext context) {
context.setTarget(HttpTestTarget.fromUrl(new URL(myProviderUrl)));
// or something like
// context.setTarget(new HttpTestTarget("localhost", myProviderPort, "/"));
}
```
**Note for Maven users:** If you use Maven to run your tests, you will have to make sure that the Maven Surefire plugin is at least
version 2.22.1 uses an isolated classpath.
For example, configure it by adding the following to your POM:
```xml
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.22.1</version>
<configuration>
<useSystemClassLoader>false</useSystemClassLoader>
</configuration>
</plugin>
```
## Provider State Methods
Provider State Methods work in the same way as with JUnit 4 tests, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs.
### Using multiple classes for the state change methods
If you have a large number of state change methods, you can split things up by moving them to other classes. You will
need to specify the additional classes on the test context in a `Before` method. Do this with the `withStateHandler`
or `setStateHandlers` methods. See [StateAnnotationsOnAdditionalClassTest](src/test/java/au/com/dius/pact/provider/junit5/StateAnnotationsOnAdditionalClassTest.java) for an example.
## Modifying the requests before they are sent
**Important Note:** You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be
authentication tokens, which have a small life span. The Http and Https test targets support injecting the request that
will executed into the test template method.
You can then add things to the request before calling the `verifyInteraction()` method.
For example to add a header:
```java
@TestTemplate
@ExtendWith(PactVerificationInvocationContextProvider.class)
void testTemplate(PactVerificationContext context, HttpRequest request) {
// This will add a header to the request
request.addHeader("X-Auth-Token", "1234");
context.verifyInteraction();
}
```
## Objects that can be injected into the test methods
You can inject the following objects into your test methods (just like the `PactVerificationContext`). They will be null if injected before the
supported phase.
| Object | Can be injected from phase | Description |
| ------ | --------------- | ----------- |
| PactVerificationContext | @BeforeEach | The context to use to execute the interaction test |
| Pact | any | The Pact model for the test |
| Interaction | any | The Interaction model for the test |
| HttpRequest | @TestTemplate | The request that is going to be executed (only for HTTP and HTTPS targets) |
| ProviderVerifier | @TestTemplate | The verifier instance that is used to verify the interaction |
## Allowing the test to pass when no pacts are found to verify (version 4.0.7+)
By default, the test will fail with an exception if no pacts were found to verify. This can be overridden by adding the
`@IgnoreNoPactsToVerify` annotation to the test class. For this to work, you test class will need to be able to receive
null values for any of the injected parameters.
Group: au.com.dius Artifact: pact-jvm-provider-junit5
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact pact-jvm-provider-junit5
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 3
Dependencies junit-jupiter-api, pact-jvm-core-support, pact-jvm-provider,
There are maybe transitive dependencies!
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 3
Dependencies junit-jupiter-api, pact-jvm-core-support, pact-jvm-provider,
There are maybe transitive dependencies!
pact-jvm-provider from group au.com.dius (version 4.0.10)
Pact provider
=============
sub project of https://github.com/DiUS/pact-jvm
The pact provider is responsible for verifying that an API provider adheres to a number of pacts authored by its clients
This library provides the basic tools required to automate the process, and should be usable on its own in many instances.
Framework and build tool specific bindings will be provided in separate libraries that build on top of this core functionality.
### Provider State
Before each interaction is executed, the provider under test will have the opportunity to enter a state.
Generally the state maps to a set of fixture data for mocking out services that the provider is a consumer of (they will have their own pacts)
The pact framework will instruct the test server to enter that state by sending:
POST "${config.stateChangeUrl.url}/setup" { "state" : "${interaction.stateName}" }
### An example of running provider verification with junit
This example uses Groovy, JUnit 4 and Hamcrest matchers to run the provider verification.
As the provider service is a DropWizard application, it uses the DropwizardAppRule to startup the service before running any test.
**Warning:** It only grabs the first interaction from the pact file with the consumer, where there could be many. (This could possibly be solved with a parameterized test)
```groovy
class ReadmeExamplePactJVMProviderJUnitTest {
@ClassRule
public static final TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>(
TestDropwizardApplication, ResourceHelpers.resourceFilePath('dropwizard/test-config.yaml'))
private static ProviderInfo serviceProvider
private static Pact<RequestResponseInteraction> testConsumerPact
private static ConsumerInfo consumer
@BeforeClass
static void setupProvider() {
serviceProvider = new ProviderInfo('Dropwizard App')
serviceProvider.setProtocol('http')
serviceProvider.setHost('localhost')
serviceProvider.setPort(8080)
serviceProvider.setPath('/')
consumer = new ConsumerInfo()
consumer.setName('test_consumer')
consumer.setPactSource(new UrlSource(
ReadmeExamplePactJVMProviderJUnitTest.getResource('/pacts/zoo_app-animal_service.json').toString()))
testConsumerPact = DefaultPactReader.INSTANCE.loadPact(consumer.getPactSource()) as Pact<RequestResponseInteraction>
}
@Test
void runConsumerPacts() {
// grab the first interaction from the pact with consumer
Interaction interaction = testConsumerPact.interactions.get(0)
// setup the verifier
ProviderVerifier verifier = setupVerifier(interaction, serviceProvider, consumer)
// setup any provider state
// setup the client and interaction to fire against the provider
ProviderClient client = new ProviderClient(serviceProvider, new HttpClientFactory())
Map<String, Object> failures = new HashMap<>()
verifier.verifyResponseFromProvider(serviceProvider, interaction, interaction.getDescription(), failures, client)
// normally assert all good, but in this example it will fail
assertThat(failures, is(not(empty())))
verifier.displayFailures(failures)
}
private ProviderVerifier setupVerifier(Interaction interaction, ProviderInfo provider, ConsumerInfo consumer) {
ProviderVerifier verifier = new ProviderVerifier()
verifier.initialiseReporters(provider)
verifier.reportVerificationForConsumer(consumer, provider, new UrlSource('http://example.example'))
if (!interaction.getProviderStates().isEmpty()) {
for (ProviderState providerState: interaction.getProviderStates()) {
verifier.reportStateForInteraction(providerState.getName(), provider, consumer, true)
}
}
verifier.reportInteractionDescription(interaction)
return verifier
}
}
```
### An example of running provider verification with spock
This example uses groovy and spock to run the provider verification.
Again the provider service is a DropWizard application, and is using the DropwizardAppRule to startup the service.
This example runs all interactions using spocks Unroll feature
```groovy
class ReadmeExamplePactJVMProviderSpockSpec extends Specification {
@ClassRule @Shared
TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>(TestDropwizardApplication,
ResourceHelpers.resourceFilePath('dropwizard/test-config.yaml'))
@Shared
ProviderInfo serviceProvider
ProviderVerifier verifier
def setupSpec() {
serviceProvider = new ProviderInfo('Dropwizard App')
serviceProvider.protocol = 'http'
serviceProvider.host = 'localhost'
serviceProvider.port = 8080
serviceProvider.path = '/'
serviceProvider.hasPactWith('zoo_app') { consumer ->
consumer.pactSource = new FileSource(new File(ResourceHelpers.resourceFilePath('pacts/zoo_app-animal_service.json')))
}
}
def setup() {
verifier = new ProviderVerifier()
}
def cleanup() {
// cleanup provider state
// ie. db.truncateAllTables()
}
def cleanupSpec() {
// cleanup provider
}
@Unroll
def "Provider Pact - With Consumer #consumer"() {
expect:
!verifyConsumerPact(consumer).empty
where:
consumer << serviceProvider.consumers
}
private Map verifyConsumerPact(ConsumerInfo consumer) {
Map failures = [:]
verifier.initialiseReporters(serviceProvider)
verifier.runVerificationForConsumer(failures, serviceProvider, consumer)
if (!failures.empty) {
verifier.displayFailures(failures)
}
failures
}
}
```
0 downloads
Artifact pact-jvm-provider
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies commons-io, jansi, httpclient, pact-jvm-core-model, pact-jvm-core-pact-broker, pact-jvm-core-matchers, pact-jvm-core-support, arrow-core-extensions,
There are maybe transitive dependencies!
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies commons-io, jansi, httpclient, pact-jvm-core-model, pact-jvm-core-pact-broker, pact-jvm-core-matchers, pact-jvm-core-support, arrow-core-extensions,
There are maybe transitive dependencies!
pact-jvm-consumer-junit5 from group au.com.dius (version 4.0.10)
pact-jvm-consumer-junit5
========================
JUnit 5 support for Pact consumer tests
## Dependency
The library is available on maven central using:
* group-id = `au.com.dius`
* artifact-id = `pact-jvm-consumer-junit5`
* version-id = `4.0.x`
## Usage
### 1. Add the Pact consumer test extension to the test class.
To write Pact consumer tests with JUnit 5, you need to add `@ExtendWith(PactConsumerTestExt)` to your test class. This
replaces the `PactRunner` used for JUnit 4 tests. The rest of the test follows a similar pattern as for JUnit 4 tests.
```java
@ExtendWith(PactConsumerTestExt.class)
class ExampleJavaConsumerPactTest {
```
### 2. create a method annotated with `@Pact` that returns the interactions for the test
For each test (as with JUnit 4), you need to define a method annotated with the `@Pact` annotation that returns the
interactions for the test.
```java
@Pact(provider="ArticlesProvider", consumer="test_consumer")
public RequestResponsePact createPact(PactDslWithProvider builder) {
return builder
.given("test state")
.uponReceiving("ExampleJavaConsumerPactTest test interaction")
.path("/articles.json")
.method("GET")
.willRespondWith()
.status(200)
.body("{\"responsetest\": true}")
.toPact();
}
```
### 3. Link the mock server with the interactions for the test with `@PactTestFor`
Then the final step is to use the `@PactTestFor` annotation to tell the Pact extension how to setup the Pact test. You
can either put this annotation on the test class, or on the test method. For examples see
[ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) and
[MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy).
The `@PactTestFor` annotation allows you to control the mock server in the same way as the JUnit 4 `PactProviderRule`. It
allows you to set the hostname to bind to (default is `localhost`) and the port (default is to use a random port). You
can also set the Pact specification version to use (default is V3).
```java
@ExtendWith(PactConsumerTestExt.class)
@PactTestFor(providerName = "ArticlesProvider")
public class ExampleJavaConsumerPactTest {
```
**NOTE on the hostname**: The mock server runs in the same JVM as the test, so the only valid values for hostname are:
| hostname | result |
| -------- | ------ |
| `localhost` | binds to the address that localhost points to (normally the loopback adapter) |
| `127.0.0.1` or `::1` | binds to the loopback adapter |
| host name | binds to the default interface that the host machines DNS name resolves to |
| `0.0.0.0` or `::` | binds to the all interfaces on the host machine |
#### Matching the interactions by provider name
If you set the `providerName` on the `@PactTestFor` annotation, then the first method with a `@Pact` annotation with the
same provider name will be used. See [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) for
an example.
#### Matching the interactions by method name
If you set the `pactMethod` on the `@PactTestFor` annotation, then the method with the provided name will be used (it still
needs a `@Pact` annotation). See [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy) for an example.
### Injecting the mock server into the test
You can get the mock server injected into the test method by adding a `MockServer` parameter to the test method.
```java
@Test
void test(MockServer mockServer) throws IOException {
HttpResponse httpResponse = Request.Get(mockServer.getUrl() + "/articles.json").execute().returnResponse();
assertThat(httpResponse.getStatusLine().getStatusCode(), is(equalTo(200)));
}
```
This helps with getting the base URL of the mock server, especially when a random port is used.
## Changing the directory pact files are written to
By default, pact files are written to `target/pacts` (or `build/pacts` if you use Gradle), but this can be overwritten with the `pact.rootDir` system property.
This property needs to be set on the test JVM as most build tools will fork a new JVM to run the tests.
For Gradle, add this to your build.gradle:
```groovy
test {
systemProperties['pact.rootDir'] = "$buildDir/custom-pacts-directory"
}
```
For maven, use the systemPropertyVariables configuration:
```xml
<project>
[...]
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18</version>
<configuration>
<systemPropertyVariables>
<pact.rootDir>some/other/directory</pact.rootDir>
<buildDirectory>${project.build.directory}</buildDirectory>
[...]
</systemPropertyVariables>
</configuration>
</plugin>
</plugins>
</build>
[...]
</project>
```
For SBT:
```scala
fork in Test := true,
javaOptions in Test := Seq("-Dpact.rootDir=some/other/directory")
```
### Using `@PactFolder` annotation
You can override the directory the pacts are written in a test by adding the `@PactFolder` annotation to the test
class.
## Forcing pact files to be overwritten (3.6.5+)
By default, when the pact file is written, it will be merged with any existing pact file. To force the file to be
overwritten, set the Java system property `pact.writer.overwrite` to `true`.
## Unsupported
The current implementation does not support tests with multiple providers. This will be added in a later release.
# Having values injected from provider state callbacks (3.6.11+)
You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers,
bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example
of where this would be useful is API calls that require an ID which would be auto-generated by the database on the
provider side, so there is no way to know what the ID would be beforehand.
The following DSL methods all you to set an expression that will be parsed with the values returned from the provider states:
For JSON bodies, use `valueFromProviderState`.<br/>
For headers, use `headerFromProviderState`.<br/>
For query parameters, use `queryParameterFromProviderState`.<br/>
For paths, use `pathFromProviderState`.
For example, assume that an API call is made to get the details of a user by ID. A provider state can be defined that
specifies that the user must be exist, but the ID will be created when the user is created. So we can then define an
expression for the path where the ID will be replaced with the value returned from the provider state callback.
```java
.pathFromProviderState("/api/users/${id}", "/api/users/100")
```
You can also just use the key instead of an expression:
```java
.valueFromProviderState('userId', 'userId', 100) // will look value using userId as the key
```
Group: au.com.dius Artifact: pact-jvm-consumer-junit5
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact pact-jvm-consumer-junit5
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 2
Dependencies junit-jupiter-api, pact-jvm-consumer,
There are maybe transitive dependencies!
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 2
Dependencies junit-jupiter-api, pact-jvm-consumer,
There are maybe transitive dependencies!
pact-jvm-provider_2.11 from group au.com.dius (version 3.5.24)
Pact provider
=============
sub project of https://github.com/DiUS/pact-jvm
The pact provider is responsible for verifying that an API provider adheres to a number of pacts authored by its clients
This library provides the basic tools required to automate the process, and should be usable on its own in many instances.
Framework and build tool specific bindings will be provided in separate libraries that build on top of this core functionality.
### Provider State
Before each interaction is executed, the provider under test will have the opportunity to enter a state.
Generally the state maps to a set of fixture data for mocking out services that the provider is a consumer of (they will have their own pacts)
The pact framework will instruct the test server to enter that state by sending:
POST "${config.stateChangeUrl.url}/setup" { "state" : "${interaction.stateName}" }
### An example of running provider verification with junit
This example uses Groovy, JUnit 4 and Hamcrest matchers to run the provider verification.
As the provider service is a DropWizard application, it uses the DropwizardAppRule to startup the service before running any test.
**Warning:** It only grabs the first interaction from the pact file with the consumer, where there could be many. (This could possibly be solved with a parameterized test)
```groovy
class ReadmeExamplePactJVMProviderJUnitTest {
@ClassRule
public static TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>(
TestDropwizardApplication.class, ResourceHelpers.resourceFilePath("dropwizard/test-config.yaml"))
private static ProviderInfo serviceProvider
private static Pact<RequestResponseInteraction> testConsumerPact
private static ConsumerInfo consumer
@BeforeClass
static void setupProvider() {
serviceProvider = new ProviderInfo("Dropwizard App")
serviceProvider.setProtocol("http")
serviceProvider.setHost("localhost")
serviceProvider.setPort(8080)
serviceProvider.setPath("/")
consumer = new ConsumerInfo()
consumer.setName("test_consumer")
consumer.setPactSource(new UrlSource(
ReadmeExamplePactJVMProviderJUnitTest.getResource("/pacts/zoo_app-animal_service.json").toString()))
testConsumerPact = PactReader.loadPact(consumer.getPactSource()) as Pact<RequestResponseInteraction>
}
@Test
void runConsumerPacts() {
// grab the first interaction from the pact with consumer
Interaction interaction = testConsumerPact.interactions.get(0)
// setup the verifier
ProviderVerifier verifier = setupVerifier(interaction, serviceProvider, consumer)
// setup any provider state
// setup the client and interaction to fire against the provider
ProviderClient client = new ProviderClient(serviceProvider, new HttpClientFactory())
Map<String, Object> failures = new HashMap<>()
verifier.verifyResponseFromProvider(serviceProvider, interaction, interaction.getDescription(), failures, client)
if (!failures.isEmpty()) {
verifier.displayFailures(failures)
}
// Assert all good
assertThat(failures, is(empty()))
}
private ProviderVerifier setupVerifier(Interaction interaction, ProviderInfo provider, ConsumerInfo consumer) {
ProviderVerifier verifier = new ProviderVerifier()
verifier.initialiseReporters(provider)
verifier.reportVerificationForConsumer(consumer, provider)
if (!interaction.getProviderStates().isEmpty()) {
for (ProviderState providerState: interaction.getProviderStates()) {
verifier.reportStateForInteraction(providerState.getName(), provider, consumer, true)
}
}
verifier.reportInteractionDescription(interaction)
return verifier
}
}
```
### An example of running provider verification with spock
This example uses groovy and spock to run the provider verification.
Again the provider service is a DropWizard application, and is using the DropwizardAppRule to startup the service.
This example runs all interactions using spocks Unroll feature
```groovy
class ReadmeExamplePactJVMProviderSpockSpec extends Specification {
@ClassRule @Shared
TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>(TestDropwizardApplication,
ResourceHelpers.resourceFilePath('dropwizard/test-config.yaml'))
@Shared
ProviderInfo serviceProvider
ProviderVerifier verifier
def setupSpec() {
serviceProvider = new ProviderInfo('Dropwizard App')
serviceProvider.protocol = 'http'
serviceProvider.host = 'localhost'
serviceProvider.port = 8080
serviceProvider.path = '/'
serviceProvider.hasPactWith('zoo_app') {
pactSource = new FileSource(new File(ResourceHelpers.resourceFilePath('pacts/zoo_app-animal_service.json')))
}
}
def setup() {
verifier = new ProviderVerifier()
}
def cleanup() {
// cleanup provider state
// ie. db.truncateAllTables()
}
def cleanupSpec() {
// cleanup provider
}
@Unroll
def "Provider Pact - With Consumer #consumer"() {
expect:
verifyConsumerPact(consumer).empty
where:
consumer << serviceProvider.consumers
}
private Map verifyConsumerPact(ConsumerInfo consumer) {
Map failures = [:]
verifier.initialiseReporters(serviceProvider)
verifier.runVerificationForConsumer(failures, serviceProvider, consumer)
if (!failures.empty) {
verifier.displayFailures(failures)
}
failures
}
}
```
4 downloads
Artifact pact-jvm-provider_2.11
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 14
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-model, pact-jvm-pact-broker, pact-jvm-matchers_2.11, commons-io, jansi, httpclient, reflections,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 14
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-model, pact-jvm-pact-broker, pact-jvm-matchers_2.11, commons-io, jansi, httpclient, reflections,
There are maybe transitive dependencies!
pact-jvm-provider-spring_2.11 from group au.com.dius (version 3.5.24)
# Pact Spring/JUnit runner
## Overview
Library provides ability to play contract tests against a provider using Spring & JUnit.
This library is based on and references the JUnit package, so see [junit provider support](pact-jvm-provider-junit) for more details regarding configuration using JUnit.
Supports:
- Standard ways to load pacts from folders and broker
- Easy way to change assertion strategy
- Spring Test MockMVC Controllers and ControllerAdvice using MockMvc standalone setup.
- MockMvc debugger output
- Multiple @State runs to test a particular Provider State multiple times
- **au.com.dius.pact.provider.junit.State** custom annotation - before each interaction that requires a state change,
all methods annotated by `@State` with appropriate the state listed will be invoked.
**NOTE:** For publishing provider verification results to a pact broker, make sure the Java system property `pact.provider.version`
is set with the version of your provider.
## Example of MockMvc test
```java
@RunWith(RestPactRunner.class) // Custom pact runner, child of PactRunner which runs only REST tests
@Provider("myAwesomeService") // Set up name of tested provider
@PactFolder("pacts") // Point where to find pacts (See also section Pacts source in documentation)
public class ContractTest {
//Create an instance of your controller. We cannot autowire this as we're not using (and don't want to use) a Spring test runner.
@InjectMocks
private AwesomeController awesomeController = new AwesomeController();
//Mock your service logic class. We'll use this to create scenarios for respective provider states.
@Mock
private AwesomeBusinessLogic awesomeBusinessLogic;
//Create an instance of your controller advice (if you have one). This will be passed to the MockMvcTarget constructor to be wired up with MockMvc.
@InjectMocks
private AwesomeControllerAdvice awesomeControllerAdvice = new AwesomeControllerAdvice();
//Create a new instance of the MockMvcTarget and annotate it as the TestTarget for PactRunner
@TestTarget
public final MockMvcTarget target = new MockMvcTarget();
@Before //Method will be run before each test of interaction
public void before() {
//initialize your mocks using your mocking framework
MockitoAnnotations.initMocks(this);
//configure the MockMvcTarget with your controller and controller advice
target.setControllers(awesomeController);
target.setControllerAdvice(awesomeControllerAdvice);
}
@State("default", "no-data") // Method will be run before testing interactions that require "default" or "no-data" state
public void toDefaultState() {
target.setRunTimes(3); //let's loop through this state a few times for a 3 data variants
when(awesomeBusinessLogic.getById(any(UUID.class)))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.ONE))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.TWO))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.THREE));
}
@State("error-case")
public void SingleUploadExistsState_Success() {
target.setRunTimes(1); //tell the runner to only loop one time for this state
//you might want to throw exceptions to be picked off by your controller advice
when(awesomeBusinessLogic.getById(any(UUID.class)))
.then(i -> { throw new NotCoolException(i.getArgumentAt(0, UUID.class).toString()); });
}
}
```
## Using a Spring runner (version 3.5.7+)
You can use `SpringRestPactRunner` instead of the default Pact runner to use the Spring test annotations. This will
allow you to inject or mock spring beans.
For example:
```java
@RunWith(SpringRestPactRunner.class)
@Provider("pricing")
@PactBroker(protocol = "https", host = "${pactBrokerHost}", port = "443",
authentication = @PactBrokerAuth(username = "${pactBrokerUser}", password = "${pactBrokerPassword}"))
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.DEFINED_PORT)
public class PricingServiceProviderPactTest {
@MockBean
private ProductClient productClient; // This will replace the bean with a mock in the application context
@TestTarget
@SuppressWarnings(value = "VisibilityModifier")
public final Target target = new HttpTarget(8091);
@State("Product X010000021 exists")
public void setupProductX010000021() throws IOException {
reset(productClient);
ProductBuilder product = new ProductBuilder()
.withProductCode("X010000021");
when(productClient.fetch((Set<String>) argThat(contains("X010000021")), any())).thenReturn(product);
}
@State("the product code X00001 can be priced")
public void theProductCodeX00001CanBePriced() throws IOException {
reset(productClient);
ProductBuilder product = new ProductBuilder()
.withProductCode("X00001");
when(productClient.find((Set<String>) argThat(contains("X00001")), any())).thenReturn(product);
}
}
```
### Using Spring Context Properties (version 3.5.14+)
From version 3.5.14 onwards, the SpringRestPactRunner will look up any annotation expressions (like `${pactBrokerHost}`)
above) from the Spring context. For Springboot, this will allow you to define the properties in the application test properties.
For instance, if you create the following `application.yml` in the test resources:
```yaml
pactbroker:
host: "your.broker.local"
port: "443"
protocol: "https"
auth:
username: "<your broker username>"
password: "<your broker password>"
```
Then you can use the defaults on the `@PactBroker` annotation.
```java
@RunWith(SpringRestPactRunner.class)
@Provider("My Service")
@PactBroker(
authentication = @PactBrokerAuth(username = "${pactbroker.auth.username}", password = "${pactbroker.auth.password}")
)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
```
### Using a random port with a Springboot test (version 3.5.14+)
If you use a random port in a springboot test (by setting `SpringBootTest.WebEnvironment.RANDOM_PORT`), you can use the
`SpringBootHttpTarget` which will get the application port from the spring application context.
For example:
```java
@RunWith(SpringRestPactRunner.class)
@Provider("My Service")
@PactBroker
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
@TestTarget
public final Target target = new SpringBootHttpTarget();
}
```
Group: au.com.dius Artifact: pact-jvm-provider-spring_2.11
Show all versions Show documentation Show source
Show all versions Show documentation Show source
2 downloads
Artifact pact-jvm-provider-spring_2.11
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 13
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-provider-junit_2.11, spring-boot-starter-test, spring-web, spring-webmvc, javax.servlet-api, jackson-datatype-joda,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 13
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-provider-junit_2.11, spring-boot-starter-test, spring-web, spring-webmvc, javax.servlet-api, jackson-datatype-joda,
There are maybe transitive dependencies!
pact-jvm-provider_2.10 from group au.com.dius (version 2.4.20)
Pact provider
=============
sub project of https://github.com/DiUS/pact-jvm
The pact provider is responsible for verifying that an API provider adheres to a number of pacts authored by its clients
This library provides the basic tools required to automate the process, and should be usable on its own in many instances.
Framework and build tool specific bindings will be provided in separate libraries that build on top of this core functionality.
### Running Pacts
Main takes 2 arguments:
The first is the root folder of your pact files
(all .json files in root and subfolders are assumed to be pacts)
The second is the location of your pact config json file.
### Pact config
The pact config is a simple mapping of provider names to endpoint url's
paths will be appended to endpoint url's when interactions are attempted
for an example see: https://github.com/DiUS/pact-jvm/blob/master/pact-jvm-provider/src/test/resources/pact-config.json
### Provider State
Before each interaction is executed, the provider under test will have the opportunity to enter a state.
Generally the state maps to a set of fixture data for mocking out services that the provider is a consumer of (they will have their own pacts)
The pact framework will instruct the test server to enter that state by sending:
POST "${config.stateChangeUrl.url}/setup" { "state" : "${interaction.stateName}" }
### An example of running provider verification with junit
This example uses java, junit and hamcrest matchers to run the provider verification.
As the provider service is a DropWizard application, it uses the DropwizardAppRule to startup the service before running any test.
Warning: It only grabs the first interaction from the pact file with the consumer, where there could be many. (This could possibly be solved with a parameterized test)
```java
public class PactJVMProviderJUnitTest {
@ClassRule
public static TestRule startServiceRule = new DropwizardAppRule<DropwizardAppConfig>(DropwizardApp.class, "config.yml");
private static ProviderInfo serviceProvider;
private static Pact testConsumerPact;
@BeforeClass
public static void setupProvider() {
serviceProvider = new ProviderInfo("Dropwizard App");
serviceProvider.setProtocol("http");
serviceProvider.setHost("localhost");
serviceProvider.setPort(8080);
serviceProvider.setPath("/");
ConsumerInfo consumer = new ConsumerInfo();
consumer.setName("test_consumer");
consumer.setPactFile(new File("target/pacts/ping_client-ping_service.json"));
// serviceProvider.getConsumers().add(consumer);
testConsumerPact = (Pact) new PactReader().loadPact(consumer.getPactFile());
}
@Test
@SuppressWarnings("unchecked")
public void runConsumerPacts() {
//grab the first interaction from the pact with consumer
List<Interaction> interactions = scala.collection.JavaConversions.seqAsJavaList(testConsumerPact.interactions());
Interaction interaction1 = interactions.get(0);
//setup any provider state
//setup the client and interaction to fire against the provider
ProviderClient client = new ProviderClient();
client.setProvider(serviceProvider);
client.setRequest(interaction1.request());
Map<String, Object> clientResponse = (Map<String, Object>) client.makeRequest();
Map<String, Object> result = (Map<String, Object>) ResponseComparison.compareResponse(interaction1.response(),
clientResponse, (int) clientResponse.get("statusCode"), (Map) clientResponse.get("headers"), (String) clientResponse.get("data"));
//assert all good
assertThat(result.get("method"), is(true)); // method type matches
Map headers = (Map) result.get("headers"); //headers match
headers.forEach( (k, v) ->
assertThat(format("Header: [%s] does not match", k), v, org.hamcrest.Matchers.equalTo(true))
);
assertThat((Collection<Object>)((Map)result.get("body")).values(), org.hamcrest.Matchers.hasSize(0)); // empty list of body mismatches
}
}
```
### An example of running provider verification with spock
This example uses groovy and spock to run the provider verification.
Again the provider service is a DropWizard application, and is using the DropwizardAppRule to startup the service.
This example runs all interactions using spocks Unroll feature
```groovy
class PactJVMProviderSpockSpec extends Specification {
@ClassRule @Shared
TestRule startServiceRule = new DropwizardAppRule<DropwizardAppConfig>(DropwizardApp.class, "config.yml");
@Shared
ProviderInfo serviceProvider
@Shared
Pact testConsumerPact
def setupSpec() {
serviceProvider = new ProviderInfo("Dropwizard App")
serviceProvider.protocol = "http"
serviceProvider.host = "localhost"
serviceProvider.port = 8080;
serviceProvider.path = "/"
def consumer = serviceProvider.hasPactWith("ping_consumer", {
pactFile = new File('target/pacts/ping_client-ping_service.json')
})
testConsumerPact = (Pact) new PactReader().loadPact(consumer.getPactFile());
}
def cleanup() {
//cleanup provider state
//ie. db.truncateAllTables()
}
def cleanupSpec() {
//cleanup provider
}
@Unroll
def "Provider Pact - With Consumer"() {
given:
//setup provider state
// ie. db.setupRecords()
// serviceProvider.requestFilter = { req ->
// req.addHeader('Authorization', token)
// }
when:
ProviderClient client = new ProviderClient(provider: serviceProvider, request: interaction.request())
Map clientResponse = (Map) client.makeRequest()
Map result = (Map) ResponseComparison.compareResponse(interaction.response(),
clientResponse, clientResponse.statusCode, clientResponse.headers, clientResponse.data)
then:
// method matches
result.method == true
// headers all match, spock needs the size checked before
// asserting each result
if (result.headers.size() > 0) {
result.headers.each() { k, v ->
assert v == true
}
}
// empty list of body mismatches
result.body.size() == 0
where:
interaction << scala.collection.JavaConversions.seqAsJavaList(testConsumerPact.interactions())
}
}
```
2 downloads
Artifact pact-jvm-provider_2.10
Group au.com.dius
Version 2.4.20
Last update 14. April 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 13
Dependencies slf4j-api, scala-library, pact-jvm-model, pact-jvm-matchers_2.10, scalatest_2.10, commons-io, groovy-all, jansi, http-builder, httpclient, reflections, unfiltered-netty-server_2.10, dispatch-core_2.10,
There are maybe transitive dependencies!
Group au.com.dius
Version 2.4.20
Last update 14. April 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 13
Dependencies slf4j-api, scala-library, pact-jvm-model, pact-jvm-matchers_2.10, scalatest_2.10, commons-io, groovy-all, jansi, http-builder, httpclient, reflections, unfiltered-netty-server_2.10, dispatch-core_2.10,
There are maybe transitive dependencies!
pact-jvm-provider-lein_2.12 from group au.com.dius (version 3.6.15)
# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+]
Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all
configured pacts against your provider.
## To Use It
### 1. Add the plugin to your project plugins, preferably in it's own profile.
```clojure
:profiles {
:pact {
:plugins [[au.com.dius/pact-jvm-provider-lein_2.11 "3.2.11" :exclusions [commons-logging]]]
:dependencies [[ch.qos.logback/logback-core "1.1.3"]
[ch.qos.logback/logback-classic "1.1.3"]
[org.apache.httpcomponents/httpclient "4.4.1"]]
}}}
```
### 2. Define the pacts between your consumers and providers
You define all the providers and consumers within the `:pact` configuration element of your project.
```clojure
:pact {
:service-providers {
; You can define as many as you need, but each must have a unique name
:provider1 {
; All the provider properties are optional, and have sensible defaults (shown below)
:protocol "http"
:host "localhost"
:port 8080
:path "/"
:has-pact-with {
; Again, you can define as many consumers for each provider as you need, but each must have a unique name
:consumer1 {
; pact file can be either a path or an URL
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
### 3. Execute `lein with-profile pact pact-verify`
You will have to have your provider running for this to pass.
## Enabling insecure SSL
For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting
`:insecure true` on the provider.
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:insecure true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
## Specifying a custom trust store
For environments that are running their own certificate chains:
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:trust-store "relative/path/to/trustStore.jks"
:trust-store-password "changeme"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
`:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`.
NOTE: The hostname will still be verified against the certificate.
## Modifying the requests before they are sent
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would
be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be
set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest
object as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
; function that adds an Authorization header to each request
:request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...")
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
__*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
## Modifying the HTTP Client Used
The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`).
This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`.
The function will receive the provider info as a parameter.
## Turning off URL decoding of the paths in the pact file [version 3.3.3+]
By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this
behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`.
__*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are
correctly encoded. The verifier will not be able to make a request with an invalid encoded path.
## Plugin Properties
The following plugin options can be specified on the command line:
|Property|Description|
|--------|-----------|
|:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors|
|:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]|
|:pact.filter.consumers|Comma seperated list of consumer names to verify|
|:pact.filter.description|Only verify interactions whose description match the provided regular expression|
|:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state|
|:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]|
|:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'|
Example, to run verification only for a particular consumer:
```
$ lein with-profile pact pact-verify :pact.filter.consumers=:consumer2
```
## Provider States
For each provider you can specify a state change URL to use to switch the state of the provider. This URL will
receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body`
controls if the state is passed in the request body or as a query parameter.
These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given.
```clojure
:pact {
:service-providers {
:provider1 {
:state-change-url "http://localhost:8080/tasks/pactStateChange"
:state-change-uses-body false ; defaults to true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as
JSON in the body of the request. If it is set to false, it will passed as a query parameter.
As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before
it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made.
#### Returning values that can be injected (3.6.11+)
You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers,
bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example
of where this would be useful is API calls that require an ID which would be auto-generated by the database on the
provider side, so there is no way to know what the ID would be beforehand.
There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/${id}'
for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will
be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body.
## Filtering the interactions that are verified
You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`.
Adding `:pact.filter.consumers=:consumer1,:consumer2` to the command line will only run the pact files for those
consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions
whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that
has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a
provider state.
## Starting and shutting down your provider
For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks
together. So, by creating a `start-app` and `terminate-app` alias, you could so something like:
$ lein with-profile pact do start-app, pact-verify, terminate-app
However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the
start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task`
and `:terminate-provider-task` on the provider.
```clojure
:aliases {"start-app" ^{:doc "Starts the app"}
["tasks to start app ..."] ; insert tasks to start the app here
"terminate-app" ^{:doc "Kills the app"}
["tasks to terminate app ..."] ; insert tasks to stop the app here
}
:pact {
:service-providers {
:provider1 {
:start-provider-task "start-app"
:terminate-provider-task "terminate-app"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Then you can just run:
$ lein with-profile pact pact-verify
and the `start-app` and `terminate-app` tasks will run before and after the provider verification.
## Specifying the provider hostname at runtime [3.0.4+]
If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or
AWS instance), you can give an anonymous function as the provider host that returns the host name. The function
will receive the provider information as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
:host #(calculate-host-name %)
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Group: au.com.dius Artifact: pact-jvm-provider-lein_2.12
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact pact-jvm-provider-lein_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies pact-jvm-provider_2.12, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies pact-jvm-provider_2.12, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!
pact-jvm-provider-spring from group au.com.dius (version 4.0.10)
# Pact Spring/JUnit runner
## Overview
Library provides ability to play contract tests against a provider using Spring & JUnit.
This library is based on and references the JUnit package, so see the [Pact JUnit 4](../pact-jvm-provider-junit) or [Pact JUnit 5](../pact-jvm-provider-junit5) providers for more details regarding configuration using JUnit.
Supports:
- Standard ways to load pacts from folders and broker
- Easy way to change assertion strategy
- Spring Test MockMVC Controllers and ControllerAdvice using MockMvc standalone setup.
- MockMvc debugger output
- Multiple @State runs to test a particular Provider State multiple times
- **au.com.dius.pact.provider.junit.State** custom annotation - before each interaction that requires a state change,
all methods annotated by `@State` with appropriate the state listed will be invoked.
**NOTE:** For publishing provider verification results to a pact broker, make sure the Java system property `pact.provider.version`
is set with the version of your provider.
## Example of MockMvc test
```java
@RunWith(RestPactRunner.class) // Custom pact runner, child of PactRunner which runs only REST tests
@Provider("myAwesomeService") // Set up name of tested provider
@PactFolder("pacts") // Point where to find pacts (See also section Pacts source in documentation)
public class ContractTest {
//Create an instance of your controller. We cannot autowire this as we're not using (and don't want to use) a Spring test runner.
@InjectMocks
private AwesomeController awesomeController = new AwesomeController();
//Mock your service logic class. We'll use this to create scenarios for respective provider states.
@Mock
private AwesomeBusinessLogic awesomeBusinessLogic;
//Create an instance of your controller advice (if you have one). This will be passed to the MockMvcTarget constructor to be wired up with MockMvc.
@InjectMocks
private AwesomeControllerAdvice awesomeControllerAdvice = new AwesomeControllerAdvice();
//Create a new instance of the MockMvcTarget and annotate it as the TestTarget for PactRunner
@TestTarget
public final MockMvcTarget target = new MockMvcTarget();
@Before //Method will be run before each test of interaction
public void before() {
//initialize your mocks using your mocking framework
MockitoAnnotations.initMocks(this);
//configure the MockMvcTarget with your controller and controller advice
target.setControllers(awesomeController);
target.setControllerAdvice(awesomeControllerAdvice);
}
@State("default", "no-data") // Method will be run before testing interactions that require "default" or "no-data" state
public void toDefaultState() {
target.setRunTimes(3); //let's loop through this state a few times for a 3 data variants
when(awesomeBusinessLogic.getById(any(UUID.class)))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.ONE))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.TWO))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.THREE));
}
@State("error-case")
public void SingleUploadExistsState_Success() {
target.setRunTimes(1); //tell the runner to only loop one time for this state
//you might want to throw exceptions to be picked off by your controller advice
when(awesomeBusinessLogic.getById(any(UUID.class)))
.then(i -> { throw new NotCoolException(i.getArgumentAt(0, UUID.class).toString()); });
}
}
```
## Using Spring runners
You can use `SpringRestPactRunner` or `SpringMessagePactRunner` instead of the default Pact runner to use the Spring test annotations. This will
allow you to inject or mock spring beans. `SpringRestPactRunner` is for restful webapps and `SpringMessagePactRunner` is
for async message tests.
For example:
```java
@RunWith(SpringRestPactRunner.class)
@Provider("pricing")
@PactBroker(protocol = "https", host = "${pactBrokerHost}", port = "443",
authentication = @PactBrokerAuth(username = "${pactBrokerUser}", password = "${pactBrokerPassword}"))
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.DEFINED_PORT)
public class PricingServiceProviderPactTest {
@MockBean
private ProductClient productClient; // This will replace the bean with a mock in the application context
@TestTarget
@SuppressWarnings(value = "VisibilityModifier")
public final Target target = new HttpTarget(8091);
@State("Product X010000021 exists")
public void setupProductX010000021() throws IOException {
reset(productClient);
ProductBuilder product = new ProductBuilder()
.withProductCode("X010000021");
when(productClient.fetch((Set<String>) argThat(contains("X010000021")), any())).thenReturn(product);
}
@State("the product code X00001 can be priced")
public void theProductCodeX00001CanBePriced() throws IOException {
reset(productClient);
ProductBuilder product = new ProductBuilder()
.withProductCode("X00001");
when(productClient.find((Set<String>) argThat(contains("X00001")), any())).thenReturn(product);
}
}
```
### Using Spring Context Properties
The SpringRestPactRunner will look up any annotation expressions (like `${pactBrokerHost}`)
above) from the Spring context. For Springboot, this will allow you to define the properties in the application test properties.
For instance, if you create the following `application.yml` in the test resources:
```yaml
pactbroker:
host: "your.broker.local"
port: "443"
protocol: "https"
auth:
username: "<your broker username>"
password: "<your broker password>"
```
Then you can use the defaults on the `@PactBroker` annotation.
```java
@RunWith(SpringRestPactRunner.class)
@Provider("My Service")
@PactBroker(
authentication = @PactBrokerAuth(username = "${pactbroker.auth.username}", password = "${pactbroker.auth.password}")
)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
```
### Using a random port with a Springboot test
If you use a random port in a springboot test (by setting `SpringBootTest.WebEnvironment.RANDOM_PORT`), you need to set it to the `TestTarget`. How this works is different for JUnit4 and JUnit5.
#### JUnit4
You can use the
`SpringBootHttpTarget` which will get the application port from the spring application context.
For example:
```java
@RunWith(SpringRestPactRunner.class)
@Provider("My Service")
@PactBroker
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
@TestTarget
public final Target target = new SpringBootHttpTarget();
}
```
#### JUnit5
You actually don't need to dependend on `pact-jvm-provider-spring` for this. It's sufficient to depend on `pact-jvm-provider-junit5`.
You can set the port to the `HttpTestTarget` object in the before method.
```java
@Provider("My Service")
@PactBroker
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
@LocalServerPort
private int port;
@BeforeEach
void before(PactVerificationContext context) {
context.setTarget(new HttpTestTarget("localhost", port));
}
}
```
Group: au.com.dius Artifact: pact-jvm-provider-spring
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact pact-jvm-provider-spring
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 5
Dependencies spring-boot-starter-test, spring-webmvc, javax.servlet-api, jackson-datatype-joda, pact-jvm-provider-junit,
There are maybe transitive dependencies!
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 5
Dependencies spring-boot-starter-test, spring-webmvc, javax.servlet-api, jackson-datatype-joda, pact-jvm-provider-junit,
There are maybe transitive dependencies!
pact-jvm-provider-lein from group au.com.dius (version 4.0.10)
# Leiningen plugin to verify a provider
Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all
configured pacts against your provider.
## To Use It
### 1. Add the plugin to your project plugins, preferably in it's own profile.
```clojure
:profiles {
:pact {
:plugins [[au.com.dius/pact-jvm-provider-lein "4.0.0" :exclusions [commons-logging]]]
:dependencies [[ch.qos.logback/logback-core "1.1.3"]
[ch.qos.logback/logback-classic "1.1.3"]
[org.apache.httpcomponents/httpclient "4.4.1"]]
}}}
```
### 2. Define the pacts between your consumers and providers
You define all the providers and consumers within the `:pact` configuration element of your project.
```clojure
:pact {
:service-providers {
; You can define as many as you need, but each must have a unique name
:provider1 {
; All the provider properties are optional, and have sensible defaults (shown below)
:protocol "http"
:host "localhost"
:port 8080
:path "/"
:has-pact-with {
; Again, you can define as many consumers for each provider as you need, but each must have a unique name
:consumer1 {
; pact file can be either a path or an URL
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
### 3. Execute `lein with-profile pact pact-verify`
You will have to have your provider running for this to pass.
## Enabling insecure SSL
For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting
`:insecure true` on the provider.
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:insecure true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
## Specifying a custom trust store
For environments that are running their own certificate chains:
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:trust-store "relative/path/to/trustStore.jks"
:trust-store-password "changeme"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
`:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`.
NOTE: The hostname will still be verified against the certificate.
## Modifying the requests before they are sent
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would
be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be
set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest
object as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
; function that adds an Authorization header to each request
:request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...")
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
__*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
## Modifying the HTTP Client Used
The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`).
This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`.
The function will receive the provider info as a parameter.
## Turning off URL decoding of the paths in the pact file
By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this
behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`.
__*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are
correctly encoded. The verifier will not be able to make a request with an invalid encoded path.
## Plugin Properties
The following plugin options can be specified on the command line:
|Property|Description|
|--------|-----------|
|:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors|
|:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]|
|:pact.filter.consumers|Comma seperated list of consumer names to verify|
|:pact.filter.description|Only verify interactions whose description match the provided regular expression|
|:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state|
|:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]|
|:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'|
Example, to run verification only for a particular consumer:
```
$ lein with-profile pact pact-verify :pact.filter.consumers=:consumer2
```
## Provider States
For each provider you can specify a state change URL to use to switch the state of the provider. This URL will
receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body`
controls if the state is passed in the request body or as a query parameter.
These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given.
```clojure
:pact {
:service-providers {
:provider1 {
:state-change-url "http://localhost:8080/tasks/pactStateChange"
:state-change-uses-body false ; defaults to true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as
JSON in the body of the request. If it is set to false, it will passed as a query parameter.
As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before
it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made.
#### Returning values that can be injected (3.6.11+)
You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers,
bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example
of where this would be useful is API calls that require an ID which would be auto-generated by the database on the
provider side, so there is no way to know what the ID would be beforehand.
There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/${id}'
for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will
be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body.
## Filtering the interactions that are verified
You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`.
Adding `:pact.filter.consumers=:consumer1,:consumer2` to the command line will only run the pact files for those
consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions
whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that
has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a
provider state.
## Starting and shutting down your provider
For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks
together. So, by creating a `start-app` and `terminate-app` alias, you could so something like:
$ lein with-profile pact do start-app, pact-verify, terminate-app
However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the
start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task`
and `:terminate-provider-task` on the provider.
```clojure
:aliases {"start-app" ^{:doc "Starts the app"}
["tasks to start app ..."] ; insert tasks to start the app here
"terminate-app" ^{:doc "Kills the app"}
["tasks to terminate app ..."] ; insert tasks to stop the app here
}
:pact {
:service-providers {
:provider1 {
:start-provider-task "start-app"
:terminate-provider-task "terminate-app"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Then you can just run:
$ lein with-profile pact pact-verify
and the `start-app` and `terminate-app` tasks will run before and after the provider verification.
## Specifying the provider hostname at runtime
If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or
AWS instance), you can give an anonymous function as the provider host that returns the host name. The function
will receive the provider information as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
:host #(calculate-host-name %)
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
0 downloads
Artifact pact-jvm-provider-lein
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 10
Dependencies pact-jvm-provider, clojure, core.match, leiningen-core, maven-aether-provider, aether-connector-file, aether-connector-wagon, httpclient, jansi, groovy,
There are maybe transitive dependencies!
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 10
Dependencies pact-jvm-provider, clojure, core.match, leiningen-core, maven-aether-provider, aether-connector-file, aether-connector-wagon, httpclient, jansi, groovy,
There are maybe transitive dependencies!
pact-jvm-provider-lein_2.11 from group au.com.dius (version 3.5.24)
# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+]
Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all
configured pacts against your provider.
## To Use It
### 1. Add the plugin to your project plugins, preferably in it's own profile.
```clojure
:profiles {
:pact {
:plugins [[au.com.dius/pact-jvm-provider-lein_2.11 "3.2.11" :exclusions [commons-logging]]]
:dependencies [[ch.qos.logback/logback-core "1.1.3"]
[ch.qos.logback/logback-classic "1.1.3"]
[org.apache.httpcomponents/httpclient "4.4.1"]]
}}}
```
### 2. Define the pacts between your consumers and providers
You define all the providers and consumers within the `:pact` configuration element of your project.
```clojure
:pact {
:service-providers {
; You can define as many as you need, but each must have a unique name
:provider1 {
; All the provider properties are optional, and have sensible defaults (shown below)
:protocol "http"
:host "localhost"
:port 8080
:path "/"
:has-pact-with {
; Again, you can define as many consumers for each provider as you need, but each must have a unique name
:consumer1 {
; pact file can be either a path or an URL
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
### 3. Execute `lein with-profile pact pact-verify`
You will have to have your provider running for this to pass.
## Enabling insecure SSL
For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting
`:insecure true` on the provider.
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:insecure true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
## Specifying a custom trust store
For environments that are running their own certificate chains:
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:trust-store "relative/path/to/trustStore.jks"
:trust-store-password "changeme"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
`:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`.
NOTE: The hostname will still be verified against the certificate.
## Modifying the requests before they are sent
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would
be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be
set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest
object as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
; function that adds an Authorization header to each request
:request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...")
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
__*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
## Modifying the HTTP Client Used
The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`).
This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`.
The function will receive the provider info as a parameter.
## Turning off URL decoding of the paths in the pact file [version 3.3.3+]
By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this
behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`.
__*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are
correctly encoded. The verifier will not be able to make a request with an invalid encoded path.
## Plugin Properties
The following plugin options can be specified on the command line:
|Property|Description|
|--------|-----------|
|:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors|
|:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]|
|:pact.filter.consumers|Comma seperated list of consumer names to verify|
|:pact.filter.description|Only verify interactions whose description match the provided regular expression|
|:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state|
|:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]|
|:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'|
Example, to run verification only for a particular consumer:
```
$ lein with-profile pact pact-verify :pact.filter.consumers=consumer2
```
## Provider States
For each provider you can specify a state change URL to use to switch the state of the provider. This URL will
receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body`
controls if the state is passed in the request body or as a query parameter.
These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given.
```clojure
:pact {
:service-providers {
:provider1 {
:state-change-url "http://localhost:8080/tasks/pactStateChange"
:state-change-uses-body false ; defaults to true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as
JSON in the body of the request. If it is set to false, it will passed as a query parameter.
As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before
it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made.
## Filtering the interactions that are verified
You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`.
Adding `:pact.filter.consumers=consumer1,consumer2` to the command line will only run the pact files for those
consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions
whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that
has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a
provider state.
## Starting and shutting down your provider
For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks
together. So, by creating a `start-app` and `terminate-app` alias, you could so something like:
$ lein with-profile pact do start-app, pact-verify, terminate-app
However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the
start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task`
and `:terminate-provider-task` on the provider.
```clojure
:aliases {"start-app" ^{:doc "Starts the app"}
["tasks to start app ..."] ; insert tasks to start the app here
"terminate-app" ^{:doc "Kills the app"}
["tasks to terminate app ..."] ; insert tasks to stop the app here
}
:pact {
:service-providers {
:provider1 {
:start-provider-task "start-app"
:terminate-provider-task "terminate-app"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Then you can just run:
$ lein with-profile pact pact-verify
and the `start-app` and `terminate-app` tasks will run before and after the provider verification.
## Specifying the provider hostname at runtime [3.0.4+]
If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or
AWS instance), you can give an anonymous function as the provider host that returns the host name. The function
will receive the provider information as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
:host #(calculate-host-name %)
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Group: au.com.dius Artifact: pact-jvm-provider-lein_2.11
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact pact-jvm-provider-lein_2.11
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 15
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-provider_2.11, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 15
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-provider_2.11, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!
Page 3 from 3 (items total 55)