All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download JAR files tagged by specified with all dependencies

Search JAR files by class name

finch-kotlin-core from group com.tryfinch.api (version 1.1.0)

The Finch HRIS API provides a unified way to connect to a multitide of HRIS systems. The API requires an access token issued by Finch. By default, Organization and Payroll requests use Finch's [Data Syncs](/developer-resources/Data-Syncs). If a request is made before the initial sync has completed, Finch will request data live from the provider. The latency on live requests may range from seconds to minutes depending on the provider and batch size. For automated integrations, Deductions requests (both read and write) are always made live to the provider. Latencies may range from seconds to minutes depending on the provider and batch size. Employer products are specified by the product parameter, a space-separated list of products that your application requests from an employer authenticating through Finch Connect. Valid product names are— - `company`: Read basic company data - `directory`: Read company directory and organization structure - `individual`: Read individual data, excluding income and employment data - `employment`: Read individual employment and income data - `payment`: Read payroll and contractor related payments by the company - `pay_statement`: Read detailed pay statements for each individual - `benefits`: Create and manage deductions and contributions and enrollment for an employer [![Open in Postman](https://run.pstmn.io/button.svg)](https://god.gw.postman.com/run-collection/21027137-08db0929-883d-4094-a9ce-dbf5a9bee4a4?action=collection%2Ffork&collection-url=entityId%3D21027137-08db0929-883d-4094-a9ce-dbf5a9bee4a4%26entityType%3Dcollection%26workspaceId%3D1edf19bc-e0a8-41e9-ac55-481a4b50790b)

Group: com.tryfinch.api Artifact: finch-kotlin-core
Show all versions Show documentation Show source 
 

0 downloads
Artifact finch-kotlin-core
Group com.tryfinch.api
Version 1.1.0
Last update 14. August 2024
Organization not specified
URL https://developer.tryfinch.com/
License Apache-2.0
Dependencies amount 4
Dependencies jackson-core, jackson-databind, guava, kotlin-stdlib,
There are maybe transitive dependencies!

finch-java-client-okhttp from group com.tryfinch.api (version 1.1.0)

The Finch HRIS API provides a unified way to connect to a multitide of HRIS systems. The API requires an access token issued by Finch. By default, Organization and Payroll requests use Finch's [Data Syncs](/developer-resources/Data-Syncs). If a request is made before the initial sync has completed, Finch will request data live from the provider. The latency on live requests may range from seconds to minutes depending on the provider and batch size. For automated integrations, Deductions requests (both read and write) are always made live to the provider. Latencies may range from seconds to minutes depending on the provider and batch size. Employer products are specified by the product parameter, a space-separated list of products that your application requests from an employer authenticating through Finch Connect. Valid product names are— - `company`: Read basic company data - `directory`: Read company directory and organization structure - `individual`: Read individual data, excluding income and employment data - `employment`: Read individual employment and income data - `payment`: Read payroll and contractor related payments by the company - `pay_statement`: Read detailed pay statements for each individual - `benefits`: Create and manage deductions and contributions and enrollment for an employer [![Open in Postman](https://run.pstmn.io/button.svg)](https://god.gw.postman.com/run-collection/21027137-08db0929-883d-4094-a9ce-dbf5a9bee4a4?action=collection%2Ffork&collection-url=entityId%3D21027137-08db0929-883d-4094-a9ce-dbf5a9bee4a4%26entityType%3Dcollection%26workspaceId%3D1edf19bc-e0a8-41e9-ac55-481a4b50790b)

Group: com.tryfinch.api Artifact: finch-java-client-okhttp
Show all versions Show documentation Show source 
 

0 downloads
Artifact finch-java-client-okhttp
Group com.tryfinch.api
Version 1.1.0
Last update 14. August 2024
Organization not specified
URL https://developer.tryfinch.com/
License Apache-2.0
Dependencies amount 2
Dependencies finch-java-core, kotlin-stdlib,
There are maybe transitive dependencies!

finch-java-core from group com.tryfinch.api (version 1.1.0)

The Finch HRIS API provides a unified way to connect to a multitide of HRIS systems. The API requires an access token issued by Finch. By default, Organization and Payroll requests use Finch's [Data Syncs](/developer-resources/Data-Syncs). If a request is made before the initial sync has completed, Finch will request data live from the provider. The latency on live requests may range from seconds to minutes depending on the provider and batch size. For automated integrations, Deductions requests (both read and write) are always made live to the provider. Latencies may range from seconds to minutes depending on the provider and batch size. Employer products are specified by the product parameter, a space-separated list of products that your application requests from an employer authenticating through Finch Connect. Valid product names are— - `company`: Read basic company data - `directory`: Read company directory and organization structure - `individual`: Read individual data, excluding income and employment data - `employment`: Read individual employment and income data - `payment`: Read payroll and contractor related payments by the company - `pay_statement`: Read detailed pay statements for each individual - `benefits`: Create and manage deductions and contributions and enrollment for an employer [![Open in Postman](https://run.pstmn.io/button.svg)](https://god.gw.postman.com/run-collection/21027137-08db0929-883d-4094-a9ce-dbf5a9bee4a4?action=collection%2Ffork&collection-url=entityId%3D21027137-08db0929-883d-4094-a9ce-dbf5a9bee4a4%26entityType%3Dcollection%26workspaceId%3D1edf19bc-e0a8-41e9-ac55-481a4b50790b)

Group: com.tryfinch.api Artifact: finch-java-core
Show all versions Show documentation Show source 
 

0 downloads
Artifact finch-java-core
Group com.tryfinch.api
Version 1.1.0
Last update 14. August 2024
Organization not specified
URL https://developer.tryfinch.com/
License Apache-2.0
Dependencies amount 4
Dependencies jackson-core, jackson-databind, guava, kotlin-stdlib,
There are maybe transitive dependencies!

finch-java from group com.tryfinch.api (version 1.1.0)

The Finch HRIS API provides a unified way to connect to a multitide of HRIS systems. The API requires an access token issued by Finch. By default, Organization and Payroll requests use Finch's [Data Syncs](/developer-resources/Data-Syncs). If a request is made before the initial sync has completed, Finch will request data live from the provider. The latency on live requests may range from seconds to minutes depending on the provider and batch size. For automated integrations, Deductions requests (both read and write) are always made live to the provider. Latencies may range from seconds to minutes depending on the provider and batch size. Employer products are specified by the product parameter, a space-separated list of products that your application requests from an employer authenticating through Finch Connect. Valid product names are— - `company`: Read basic company data - `directory`: Read company directory and organization structure - `individual`: Read individual data, excluding income and employment data - `employment`: Read individual employment and income data - `payment`: Read payroll and contractor related payments by the company - `pay_statement`: Read detailed pay statements for each individual - `benefits`: Create and manage deductions and contributions and enrollment for an employer [![Open in Postman](https://run.pstmn.io/button.svg)](https://god.gw.postman.com/run-collection/21027137-08db0929-883d-4094-a9ce-dbf5a9bee4a4?action=collection%2Ffork&collection-url=entityId%3D21027137-08db0929-883d-4094-a9ce-dbf5a9bee4a4%26entityType%3Dcollection%26workspaceId%3D1edf19bc-e0a8-41e9-ac55-481a4b50790b)

Group: com.tryfinch.api Artifact: finch-java
Show all versions Show documentation Show source 
 

0 downloads
Artifact finch-java
Group com.tryfinch.api
Version 1.1.0
Last update 14. August 2024
Organization not specified
URL https://developer.tryfinch.com/
License Apache-2.0
Dependencies amount 2
Dependencies finch-java-client-okhttp, kotlin-stdlib,
There are maybe transitive dependencies!

jadex-rules-base from group org.activecomponents.jadex (version 4.0.267)

Jadex Rules is a small lightweight rule engine, which currently employs the well-known Rete algorithm for highly efficient rule matching. Jadex rules is therefore similar to other rule engines like JESS and Drools. Despite the similarities there are also important differences between these systems: * Jadex Rules is very small and intended to be used as component of other software. Even though rules can be specified in a Java dialect as well as (a small variation of) the CLIPS language its primary usage is on the API level. Jadex Rules is currently the core component of the Jadex BDI reasoning engine. * Jadex Rules cleanly separates between state and rule representation. This allows the state implementation as well as the matcher to be flexibly exchanged. Some experiments have e.g. been conducted with a Jena representation. Regarding the matcher, it is planned to support also the Treat algorithm, which has a lower memory footprint than Rete. * Jadex Rules pays close attention to rule debugging. The state as well as the rete engine can be observed at runtime. The rule debugger provides functionalities to execute a rule program stepwise and also use rule breakpoints to stop the execution at those points.

Group: org.activecomponents.jadex Artifact: jadex-rules-base
Show all versions Show documentation Show source 
 

0 downloads
Artifact jadex-rules-base
Group org.activecomponents.jadex
Version 4.0.267
Last update 08. September 2022
Organization not specified
URL https://www.activecomponents.org
License GPL-3.0
Dependencies amount 4
Dependencies jadex-util-commons, jadex-util-concurrent, jadex-serialization-xml, antlr-runtime,
There are maybe transitive dependencies!

jadex-rules from group org.activecomponents.jadex (version 3.0.117)

Jadex Rules is a small lightweight rule engine, which currently employs the well-known Rete algorithm for highly efficient rule matching. Jadex rules is therefore similar to other rule engines like JESS and Drools. Despite the similarities there are also important differences between these systems: * Jadex Rules is very small and intended to be used as component of other software. Even though rules can be specified in a Java dialect as well as (a small variation of) the CLIPS language its primary usage is on the API level. Jadex Rules is currently the core component of the Jadex BDI reasoning engine. * Jadex Rules cleanly separates between state and rule representation. This allows the state implementation as well as the matcher to be flexibly exchanged. Some experiments have e.g. been conducted with a Jena representation. Regarding the matcher, it is planned to support also the Treat algorithm, which has a lower memory footprint than Rete. * Jadex Rules pays close attention to rule debugging. The state as well as the rete engine can be observed at runtime. The rule debugger provides functionalities to execute a rule program stepwise and also use rule breakpoints to stop the execution at those points.

Group: org.activecomponents.jadex Artifact: jadex-rules
Show all versions Show documentation Show source 
 

0 downloads
Artifact jadex-rules
Group org.activecomponents.jadex
Version 3.0.117
Last update 10. May 2020
Organization not specified
URL https://www.activecomponents.org
License GPL-3.0
Dependencies amount 3
Dependencies jadex-commons, jadex-xml, antlr-runtime,
There are maybe transitive dependencies!

multiLayerPerceptrons from group nz.ac.waikato.cms.weka (version 1.0.10)

This package currently contains classes for training multilayer perceptrons with one hidden layer, where the number of hidden units is user specified. MLPClassifier can be used for classification problems and MLPRegressor is the corresponding class for numeric prediction tasks. The former has as many output units as there are classes, the latter only one output unit. Both minimise a penalised squared error with a quadratic penalty on the (non-bias) weights, i.e., they implement "weight decay", where this penalised error is averaged over all training instances. The size of the penalty can be determined by the user by modifying the "ridge" parameter to control overfitting. The sum of squared weights is multiplied by this parameter before added to the squared error. Both classes use BFGS optimisation by default to find parameters that correspond to a local minimum of the error function. but optionally conjugated gradient descent is available, which can be faster for problems with many parameters. Logistic functions are used as the activation functions for all units apart from the output unit in MLPRegressor, which employs the identity function. Input attributes are standardised to zero mean and unit variance. MLPRegressor also rescales the target attribute (i.e., "class") using standardisation. All network parameters are initialised with small normally distributed random values.

Group: nz.ac.waikato.cms.weka Artifact: multiLayerPerceptrons
Show all versions Show documentation Show source 
 

10 downloads
Artifact multiLayerPerceptrons
Group nz.ac.waikato.cms.weka
Version 1.0.10
Last update 31. October 2016
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/multiLayerPerceptrons
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!

jadex-rules from group net.sourceforge.jadex (version 2.4)

Jadex Rules is a small lightweight rule engine, which currently employs the well-known Rete algorithm for highly efficient rule matching. Jadex rules is therefore similar to other rule engines like JESS and Drools. Despite the similarities there are also important differences between these systems: * Jadex Rules is very small and intended to be used as component of other software. Even though rules can be specified in a Java dialect as well as (a small variation of) the CLIPS language its primary usage is on the API level. Jadex Rules is currently the core component of the Jadex BDI reasoning engine. * Jadex Rules cleanly separates between state and rule representation. This allows the state implementation as well as the matcher to be flexibly exchanged. Some experiments have e.g. been conducted with a Jena representation. Regarding the matcher, it is planned to support also the Treat algorithm, which has a lower memory footprint than Rete. * Jadex Rules pays close attention to rule debugging. The state as well as the rete engine can be observed at runtime. The rule debugger provides functionalities to execute a rule program stepwise and also use rule breakpoints to stop the execution at those points.

Group: net.sourceforge.jadex Artifact: jadex-rules
Show all versions Show documentation Show source 
 

0 downloads
Artifact jadex-rules
Group net.sourceforge.jadex
Version 2.4
Last update 20. December 2013
Organization not specified
URL Not specified
License not specified
Dependencies amount 3
Dependencies jadex-commons, jadex-xml, antlr-runtime,
There are maybe transitive dependencies!

pact-jvm-provider-lein_2.12 from group au.com.dius (version 3.6.15)

# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+] Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all configured pacts against your provider. ## To Use It ### 1. Add the plugin to your project plugins, preferably in it's own profile. ```clojure :profiles { :pact { :plugins [[au.com.dius/pact-jvm-provider-lein_2.11 "3.2.11" :exclusions [commons-logging]]] :dependencies [[ch.qos.logback/logback-core "1.1.3"] [ch.qos.logback/logback-classic "1.1.3"] [org.apache.httpcomponents/httpclient "4.4.1"]] }}} ``` ### 2. Define the pacts between your consumers and providers You define all the providers and consumers within the `:pact` configuration element of your project. ```clojure :pact { :service-providers { ; You can define as many as you need, but each must have a unique name :provider1 { ; All the provider properties are optional, and have sensible defaults (shown below) :protocol "http" :host "localhost" :port 8080 :path "/" :has-pact-with { ; Again, you can define as many consumers for each provider as you need, but each must have a unique name :consumer1 { ; pact file can be either a path or an URL :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ### 3. Execute `lein with-profile pact pact-verify` You will have to have your provider running for this to pass. ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `:insecure true` on the provider. ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :insecure true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :trust-store "relative/path/to/trustStore.jks" :trust-store-password "changeme" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` `:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest object as a parameter. ```clojure :pact { :service-providers { :provider1 { ; function that adds an Authorization header to each request :request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...") :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`. The function will receive the provider info as a parameter. ## Turning off URL decoding of the paths in the pact file [version 3.3.3+] By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Plugin Properties The following plugin options can be specified on the command line: |Property|Description| |--------|-----------| |:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]| |:pact.filter.consumers|Comma seperated list of consumer names to verify| |:pact.filter.description|Only verify interactions whose description match the provided regular expression| |:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| |:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]| |:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'| Example, to run verification only for a particular consumer: ``` $ lein with-profile pact pact-verify :pact.filter.consumers=:consumer2 ``` ## Provider States For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body` controls if the state is passed in the request body or as a query parameter. These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given. ```clojure :pact { :service-providers { :provider1 { :state-change-url "http://localhost:8080/tasks/pactStateChange" :state-change-uses-body false ; defaults to true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as JSON in the body of the request. If it is set to false, it will passed as a query parameter. As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made. #### Returning values that can be injected (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/${id}' for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body. ## Filtering the interactions that are verified You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`. Adding `:pact.filter.consumers=:consumer1,:consumer2` to the command line will only run the pact files for those consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a provider state. ## Starting and shutting down your provider For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks together. So, by creating a `start-app` and `terminate-app` alias, you could so something like: $ lein with-profile pact do start-app, pact-verify, terminate-app However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task` and `:terminate-provider-task` on the provider. ```clojure :aliases {"start-app" ^{:doc "Starts the app"} ["tasks to start app ..."] ; insert tasks to start the app here "terminate-app" ^{:doc "Kills the app"} ["tasks to terminate app ..."] ; insert tasks to stop the app here } :pact { :service-providers { :provider1 { :start-provider-task "start-app" :terminate-provider-task "terminate-app" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` Then you can just run: $ lein with-profile pact pact-verify and the `start-app` and `terminate-app` tasks will run before and after the provider verification. ## Specifying the provider hostname at runtime [3.0.4+] If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or AWS instance), you can give an anonymous function as the provider host that returns the host name. The function will receive the provider information as a parameter. ```clojure :pact { :service-providers { :provider1 { :host #(calculate-host-name %) :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ```

Group: au.com.dius Artifact: pact-jvm-provider-lein_2.12
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-lein_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies pact-jvm-provider_2.12, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!

pact-jvm-provider-lein from group au.com.dius (version 4.0.10)

# Leiningen plugin to verify a provider Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all configured pacts against your provider. ## To Use It ### 1. Add the plugin to your project plugins, preferably in it's own profile. ```clojure :profiles { :pact { :plugins [[au.com.dius/pact-jvm-provider-lein "4.0.0" :exclusions [commons-logging]]] :dependencies [[ch.qos.logback/logback-core "1.1.3"] [ch.qos.logback/logback-classic "1.1.3"] [org.apache.httpcomponents/httpclient "4.4.1"]] }}} ``` ### 2. Define the pacts between your consumers and providers You define all the providers and consumers within the `:pact` configuration element of your project. ```clojure :pact { :service-providers { ; You can define as many as you need, but each must have a unique name :provider1 { ; All the provider properties are optional, and have sensible defaults (shown below) :protocol "http" :host "localhost" :port 8080 :path "/" :has-pact-with { ; Again, you can define as many consumers for each provider as you need, but each must have a unique name :consumer1 { ; pact file can be either a path or an URL :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ### 3. Execute `lein with-profile pact pact-verify` You will have to have your provider running for this to pass. ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `:insecure true` on the provider. ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :insecure true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```clojure :pact { :service-providers { :provider1 { :protocol "https" :host "localhost" :port 8443 :trust-store "relative/path/to/trustStore.jks" :trust-store-password "changeme" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` `:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest object as a parameter. ```clojure :pact { :service-providers { :provider1 { ; function that adds an Authorization header to each request :request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...") :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`. The function will receive the provider info as a parameter. ## Turning off URL decoding of the paths in the pact file By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Plugin Properties The following plugin options can be specified on the command line: |Property|Description| |--------|-----------| |:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]| |:pact.filter.consumers|Comma seperated list of consumer names to verify| |:pact.filter.description|Only verify interactions whose description match the provided regular expression| |:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| |:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]| |:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'| Example, to run verification only for a particular consumer: ``` $ lein with-profile pact pact-verify :pact.filter.consumers=:consumer2 ``` ## Provider States For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body` controls if the state is passed in the request body or as a query parameter. These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given. ```clojure :pact { :service-providers { :provider1 { :state-change-url "http://localhost:8080/tasks/pactStateChange" :state-change-uses-body false ; defaults to true :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as JSON in the body of the request. If it is set to false, it will passed as a query parameter. As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made. #### Returning values that can be injected (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/${id}' for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body. ## Filtering the interactions that are verified You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`. Adding `:pact.filter.consumers=:consumer1,:consumer2` to the command line will only run the pact files for those consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a provider state. ## Starting and shutting down your provider For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks together. So, by creating a `start-app` and `terminate-app` alias, you could so something like: $ lein with-profile pact do start-app, pact-verify, terminate-app However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task` and `:terminate-provider-task` on the provider. ```clojure :aliases {"start-app" ^{:doc "Starts the app"} ["tasks to start app ..."] ; insert tasks to start the app here "terminate-app" ^{:doc "Kills the app"} ["tasks to terminate app ..."] ; insert tasks to stop the app here } :pact { :service-providers { :provider1 { :start-provider-task "start-app" :terminate-provider-task "terminate-app" :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ``` Then you can just run: $ lein with-profile pact pact-verify and the `start-app` and `terminate-app` tasks will run before and after the provider verification. ## Specifying the provider hostname at runtime If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or AWS instance), you can give an anonymous function as the provider host that returns the host name. The function will receive the provider information as a parameter. ```clojure :pact { :service-providers { :provider1 { :host #(calculate-host-name %) :has-pact-with { :consumer1 { :pact-file "path/to/provider1-consumer1-pact.json" } } } } } ```

Group: au.com.dius Artifact: pact-jvm-provider-lein
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-lein
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 10
Dependencies pact-jvm-provider, clojure, core.match, leiningen-core, maven-aether-provider, aether-connector-file, aether-connector-wagon, httpclient, jansi, groovy,
There are maybe transitive dependencies!



Page 25 from 27 (items total 268)


© 2015 - 2024 Weber Informatics LLC | Privacy Policy