All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download JAR files tagged by user with all dependencies

Search JAR files by class name

specs2_2.13 from group au.com.dius.pact.consumer (version 4.2.21)

pact-jvm-consumer-specs2 ======================== ## Specs2 Bindings for the pact-jvm library ## Dependency In the root folder of your project in build.sbt add the line: ```scala libraryDependencies += "au.com.dius.pact.consumer" %% "specs2" % "4.0.1" ``` or if you are using Gradle: ```groovy dependencies { testCompile "au.com.dius.pact.consumer:specs2_2.13:4.0.1" } ``` __*Note:*__ `PactSpec` requires spec2 3.x. Also, for spray users there's an incompatibility between specs2 v3.x and spray. Follow these instructions to resolve that problem: https://groups.google.com/forum/#!msg/spray-user/2T6SBp4OJeI/AJlnJuAKPRsJ ## Usage To author a test, mix `PactSpec` into your spec First we define a service client called `ConsumerService`. In our example this is a simple wrapper for `dispatch`, an HTTP client. The source code can be found in the test folder alongside the `ExamplePactSpec`. Here is a simple example: ``` import au.com.dius.pact.consumer.PactSpec class ExamplePactSpec extends Specification with PactSpec { val consumer = "My Consumer" val provider = "My Provider" override def is = uponReceiving("a request for foo") .matching(path = "/foo") .willRespondWith(body = "{}") .withConsumerTest { providerConfig => Await.result(ConsumerService(providerConfig.url).simpleGet("/foo"), Duration(1000, MILLISECONDS)) must beEqualTo(200, Some("{}")) } } ``` This spec will be run along with the rest of your specs2 unit tests and will output your pact json to ``` /target/pacts/<Consumer>_<Provider>.json ``` # Forcing pact files to be overwritten (3.6.5+) By default, when the pact file is written, it will be merged with any existing pact file. To force the file to be overwritten, set the Java system property `pact.writer.overwrite` to `true`. # Test Analytics We are tracking anonymous analytics to gather important usage statistics like JVM version and operating system. To disable tracking, set the 'pact_do_not_track' system property or environment variable to 'true'.

Group: au.com.dius.pact.consumer Artifact: specs2_2.13
Show all versions Show documentation Show source 
 

0 downloads
Artifact specs2_2.13
Group au.com.dius.pact.consumer
Version 4.2.21
Last update 13. May 2022
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 5
Dependencies consumer, json, specs2-core_2.13, async-http-client, scala-java8-compat_2.13,
There are maybe transitive dependencies!

tagmycode-netbeans from group com.tagmycode (version 2.3.0)

Provides the support for <a href="https://tagmycode.com">TagMyCode</a>. This plugin allows you to manage your own snippets.<br/> <br/> Features:<br/> * Add snippets: you can save your code snippets including description, language, and tags<br/> * List snippets (CRUD): snippets are stored locally and you can filter, sort, create, modify, edit or delete them directly from the IDE<br/> * Quick search: you can search your snippets and insert them directly into the document<br/> <br/> CHANGELOG:<br/> <br/> 2.3.0 (released 2020-07-26)<br/> * published plugin into Apache NetBeans Plugin Portal<br/> * filter snippets by languages<br/> <br/> 2.2.1 (released 2018-01-10)<br/> * Quick Search dialog is now resizable</br> * fixed syntax highlight for PHP and HTML</br> * if refresh token is not valid user will be automatically logged out</br> </br> 2.2.0 (released 2017-11-06)<br/> * snippets management works in offline mode<br/> * autodetect language on new snippet<br/> * added settings dialog with editor theme and font size option<br/> * added title and description to snippet view<br/> * changed open browser class<br/> * text can be dragged into table to create a new snippet<br/> * snippets can be dragged directly into editor and the code are copied<br/> * added "save as file" feature<br/> * added "clone snippet" feature<br/> * added "snippet properties" dialog<br/> * detect binary file<br/> <br/> 2.1.0 (released 2017-04-24)<br/> * moved error messages from dialog to Netbeans Notification Log<br/> * added welcome panel<br/> * about dialog shows plugin version and framework version<br/> * moved storage from JSON to SQL<br/> <br/> 2.0 (released 2016-07-11)<br/> * new user interface<br/> * list of snippets stored locally<br/> * syntax highlight powered by <a href="http://bobbylight.github.io/RSyntaxTextArea/">RSyntaxTextArea</a><br/> * snippets are synchronized with server<br/> * filter snippets<br/> * quick search feature<br/> * insert selected snippet at cursor in document<br/> <br/> 1.1.3 (released 2015-12-18)<br/> * Fix for NetBeans 8.1<br/> <br/> 1.1.2 (released 2014-10-03)<br/> * Switched authentication from OAuth 1.0a to OAuth 2<br/> * Console write also snippet title when new snippet is created (thanks to bejoy)<br/> <br/> 1.1 (released 2014-08-19)<br/> * Added "Search snippets" feature<br/> * Fixed some minor bugs<br/> <br/> 1.0 (released 2014-04-14)<br/> * First release with feature "Create snippet"<br/>

Group: com.tagmycode Artifact: tagmycode-netbeans
Show documentation Show source 
 

0 downloads
Artifact tagmycode-netbeans
Group com.tagmycode
Version 2.3.0
Last update 06. September 2020
Organization not specified
URL https://tagmycode.com
License Apache License 2.0
Dependencies amount 18
Dependencies commons-lang3, rsyntaxtextarea, guava, org-netbeans-api-annotations-common, org-openide-awt, org-netbeans-modules-settings, org-openide-dialogs, org-netbeans-modules-editor, org-netbeans-modules-keyring, org-openide-nodes, org-openide-util, org-openide-loaders, org-openide-windows, org-openide-util-ui, org-openide-text, org-netbeans-api-progress, log4j, tagmycode-plugin-framework,
There are maybe transitive dependencies!

pact-jvm-provider-junit5-spring from group au.com.dius (version 4.0.10)

# Pact Spring/JUnit5 Support This module extends the base [Pact JUnit5 module](../pact-jvm-provider-junit5). See that for more details. For writing Spring Pact verification tests with JUnit 5, there is an JUnit 5 Invocation Context Provider that you can use with the `@TestTemplate` annotation. This will generate a test for each interaction found for the pact files for the provider. To use it, add the `@Provider` and `@ExtendWith(SpringExtension.class)` and one of the pact source annotations to your test class (as per a JUnit 5 test), then add a method annotated with `@TestTemplate` and `@ExtendWith(PactVerificationSpringProvider.class)` that takes a `PactVerificationContext` parameter. You will need to call `verifyInteraction()` on the context parameter in your test template method. For example: ```java @ExtendWith(SpringExtension.class) @SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.DEFINED_PORT) @Provider(&quot;Animal Profile Service&quot;) @PactBroker public class ContractVerificationTest { @TestTemplate @ExtendWith(PactVerificationSpringProvider.class) void pactVerificationTestTemplate(PactVerificationContext context) { context.verifyInteraction(); } } ``` You will now be able to setup all the required properties using the Spring context, e.g. creating an application YAML file in the test resources: ```yaml pactbroker: host: your.broker.host auth: username: broker-user password: broker.password ``` You can also run pact tests against `MockMvc` without need to spin up the whole application context which takes time and often requires more additional setup (e.g. database). In order to run lightweight tests just use `@WebMvcTest` from Spring and `MockMvcTestTarget` as a test target before each test. For example: ```java @WebMvcTest @Provider(&quot;myAwesomeService&quot;) @PactBroker class ContractVerificationTest { @Autowired private MockMvc mockMvc; @TestTemplate @ExtendWith(PactVerificationInvocationContextProvider.class) void pactVerificationTestTemplate(PactVerificationContext context) { context.verifyInteraction(); } @BeforeEach void before(PactVerificationContext context) { context.setTarget(new MockMvcTestTarget(mockMvc)); } } ``` You can also use `MockMvcTestTarget` for tests without spring context by providing the controllers manually. For example: ```java @Provider(&quot;myAwesomeService&quot;) @PactFolder(&quot;pacts&quot;) class MockMvcTestTargetStandaloneMockMvcTestJava { @TestTemplate @ExtendWith(PactVerificationInvocationContextProvider.class) void pactVerificationTestTemplate(PactVerificationContext context) { context.verifyInteraction(); } @BeforeEach void before(PactVerificationContext context) { MockMvcTestTarget testTarget = new MockMvcTestTarget(); testTarget.setControllers(new DataResource()); context.setTarget(testTarget); } @RestController static class DataResource { @GetMapping(&quot;/data&quot;) @ResponseStatus(HttpStatus.NO_CONTENT) void getData(@RequestParam(&quot;ticketId&quot;) String ticketId) { } } } ``` **Important:** Since `@WebMvcTest` starts only Spring MVC components you can&apos;t use `PactVerificationSpringProvider` and need to fallback to `PactVerificationInvocationContextProvider`

Group: au.com.dius Artifact: pact-jvm-provider-junit5-spring
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-junit5-spring
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

HockeySDK from group net.hockeyapp.android (version 5.2.0)

HockeySDK-Android implements support for using HockeyApp in your Android application. The following features are currently supported: Collect crash reports:If your app crashes, a crash log is written to the device's storage. If the user starts the app again, they will be asked asked to submit the crash report to HockeyApp. This works for both beta and live apps, i.e. those submitted to Google Play or other app stores. Crash logs contain viable information for you to help resolve the issue. Furthermore, you as a developer can add additional information to the report as well. Update Alpha/Beta apps: The app will check with HockeyApp if a new version for your alpha/beta build is available. If yes, it will show a dialog to users and let them see the release notes, the version history and start the installation process right away. You can even force the installation of certain updates. User Metrics: Understand user behavior to improve your app. Track usage through daily and monthly active users. Monitor crash impacted users. Measure customer engagement through session count. Add custom tracking calls to learn which features your users are actually using. This feature requires a minimum API level of 14 (Android 4.x Ice Cream Sandwich). Feedback: Besides crash reports, collecting feedback from your users from within your app is a great option to help with improving your app. You act on and answer feedback directly from the HockeyApp backend. Authenticate: Identify and authenticate users against your registered testers with the HockeyApp backend.

Group: net.hockeyapp.android Artifact: HockeySDK
Show all versions Show documentation 
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact HockeySDK
Group net.hockeyapp.android
Version 5.2.0
Last update 21. May 2019
Organization not specified
URL https://github.com/bitstadium/hockeysdk-android
License MIT
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

beast-tool from group es.upm.dit.gsi (version 0.9.9)

BEhavioural Agents Simple Testing Tool - BEAST Tool The aim of this project is the development of a system which allows Behavior Driven Development (BDD) in Multi-Agent Systems (MAS), to make testing practices more accessible and intuitive to everybody. In one hand, in order to let tests be writable by newcomers and experts alike, system must allow the redaction of tests in plain text, because client does not need to have knowledge of our code. This plain text will be traduced to software later. The definition of test will be realized with the terminology Given-When-Then, which allows trace an easy guide of the behavior of a given scenario when something happened. In the other hand, due to the complexity of MAS, making unit testing of an agent that needs the interaction with others is almost impossible until the whole system is finished. This implies to leave testing issues to the end of the project, generating big troubles in case of malfunction. Consequently, its necessary to carry out a tool to allow the creation of mock agents and to perform tests during the whole development process. Therefore another objective of our systems is to include a mocking tool which permits testing continuously. Definitively, our tool allows the testing of any MAS in the development process, increasing its modularity and decreasing its elaboration and testing cost. These tests will be written in plain text so that anyone would be able to understand them. For further reading, a paper published in ITMAS2012 workshop can be found in: http://scholar.google.es/citations?view_op=view_citation&hl=es&user=mT3KgXUAAAAJ&citation_for_view=mT3KgXUAAAAJ:Tyk-4Ss8FVUC

Group: es.upm.dit.gsi Artifact: beast-tool
Show all versions Show documentation Show source 
 

0 downloads
Artifact beast-tool
Group es.upm.dit.gsi
Version 0.9.9
Last update 03. June 2014
Organization Grupo de Sistemas Inteligentes - Universidad Politécnica de Madrid
URL http://www.gsi.dit.upm.es/index.php/es/tecnologia/software/221-beast-tool.html
License GNU General Public License, version 2
Dependencies amount 27
Dependencies mockito-all, junit, maven-surefire-plugin, jbehave-web, jaxme2, jbehave-core, log4j, jadex-kernel-bdibpmn, jadex-kernel-micro, jadex-platform-standalone, jadex-runtimetools, jadex-applications-micro, jadex-bridge, jadex-kernel-base, jadex-kernel-extension-agr, jadex-tools-bdi, jadex-applib-bdi, jadex-kernel-application, jadex-applications-bdibpmn, jadex-applications-bpmn, jadex-applications-gpmn, jadex-kernel-gpmn, jadex-nuggets, jadex-rules-applications, jadex-tools-bpmn, jadex-tools-comanalyzer, jade,
There are maybe transitive dependencies!

PerScope from group io.github.danielandroidtt (version 1.4.0)

Introducing "PerScope" Library: Simplifying Privacy Policy Event Handling for Android Apps "PerScope" is a cutting-edge library designed to streamline the processing of privacy policy events within regions where compliance with local legislation is crucial. Specifically crafted for Android applications, this library addresses the intricate task of managing privacy policy-related events while adhering to the legal requirements of the country in which the app is deployed. In today's digital landscape, ensuring user privacy and data protection is of paramount importance. Different countries have varying legal frameworks dictating how user data should be handled, necessitating robust mechanisms to accommodate these differences seamlessly. This is where the "PerScope" library shines. The key feature that sets "PerScope" apart is its incredible simplicity. With just a single function call, developers can integrate the library into their Android applications and gain immediate access to a comprehensive suite of tools for managing privacy policy events. Whether it's presenting privacy-related notifications, tracking user consents, or adapting the app's behavior based on regional requirements, "PerScope" handles it all efficiently and effectively. Here's a glimpse of what "PerScope" brings to the table: Localized Compliance: "PerScope" empowers developers to align their apps with the privacy laws of each region. By intelligently detecting the user's location, the library ensures that the app's behavior remains compliant with the specific privacy regulations of that area. Event Handling Made Easy: Instead of grappling with complex event management code, developers can integrate the "PerScope" function, drastically reducing development time and effort. The library takes care of the intricate event handling process seamlessly. Dynamic Adaptation: With the ability to dynamically adapt the app's features based on the user's consent and the local legal requirements, "PerScope" ensures a personalized and compliant user experience. Notification Presentation: "PerScope" assists in presenting privacy-related notifications to users, making it easier to inform them about data collection practices and obtain necessary consents. Smooth Integration: The library is designed to be easily integrated into existing Android applications, minimizing disruptions to the development process. In a nutshell, "PerScope" is a developer's go-to solution for managing privacy policy events within Android apps. Its single-function approach, combined with its capacity to handle a complex and critical aspect of app development, makes it an indispensable tool for app creators aiming to provide a user-centric, privacy-respecting experience while complying with regional legislation. Stay on the right side of the law and prioritize user privacy with the power of "PerScope."

Group: io.github.danielandroidtt Artifact: PerScope
Show all versions 
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact PerScope
Group io.github.danielandroidtt
Version 1.4.0
Last update 27. August 2023
Organization not specified
URL https://github.com/DanielAndroidTT/PerScope
License MIT License
Dependencies amount 1
Dependencies kotlin-stdlib-jdk8,
There are maybe transitive dependencies!

pact-jvm-consumer-junit5_2.12 from group au.com.dius (version 3.6.15)

pact-jvm-consumer-junit5 ======================== JUnit 5 support for Pact consumer tests ## Dependency The library is available on maven central using: * group-id = `au.com.dius` * artifact-id = `pact-jvm-consumer-junit5_2.12` * version-id = `3.6.x` ## Usage ### 1. Add the Pact consumer test extension to the test class. To write Pact consumer tests with JUnit 5, you need to add `@ExtendWith(PactConsumerTestExt)` to your test class. This replaces the `PactRunner` used for JUnit 4 tests. The rest of the test follows a similar pattern as for JUnit 4 tests. ```java @ExtendWith(PactConsumerTestExt.class) class ExampleJavaConsumerPactTest { ``` ### 2. create a method annotated with `@Pact` that returns the interactions for the test For each test (as with JUnit 4), you need to define a method annotated with the `@Pact` annotation that returns the interactions for the test. ```java @Pact(provider=&quot;ArticlesProvider&quot;, consumer=&quot;test_consumer&quot;) public RequestResponsePact createPact(PactDslWithProvider builder) { return builder .given(&quot;test state&quot;) .uponReceiving(&quot;ExampleJavaConsumerPactTest test interaction&quot;) .path(&quot;/articles.json&quot;) .method(&quot;GET&quot;) .willRespondWith() .status(200) .body(&quot;{\&quot;responsetest\&quot;: true}&quot;) .toPact(); } ``` ### 3. Link the mock server with the interactions for the test with `@PactTestFor` Then the final step is to use the `@PactTestFor` annotation to tell the Pact extension how to setup the Pact test. You can either put this annotation on the test class, or on the test method. For examples see [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) and [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy). The `@PactTestFor` annotation allows you to control the mock server in the same way as the JUnit 4 `PactProviderRule`. It allows you to set the hostname to bind to (default is `localhost`) and the port (default is to use a random port). You can also set the Pact specification version to use (default is V3). ```java @ExtendWith(PactConsumerTestExt.class) @PactTestFor(providerName = &quot;ArticlesProvider&quot;) public class ExampleJavaConsumerPactTest { ``` **NOTE on the hostname**: The mock server runs in the same JVM as the test, so the only valid values for hostname are: | hostname | result | | -------- | ------ | | `localhost` | binds to the address that localhost points to (normally the loopback adapter) | | `127.0.0.1` or `::1` | binds to the loopback adapter | | host name | binds to the default interface that the host machines DNS name resolves to | | `0.0.0.0` or `::` | binds to the all interfaces on the host machine | #### Matching the interactions by provider name If you set the `providerName` on the `@PactTestFor` annotation, then the first method with a `@Pact` annotation with the same provider name will be used. See [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) for an example. #### Matching the interactions by method name If you set the `pactMethod` on the `@PactTestFor` annotation, then the method with the provided name will be used (it still needs a `@Pact` annotation). See [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy) for an example. ### Injecting the mock server into the test You can get the mock server injected into the test method by adding a `MockServer` parameter to the test method. ```java @Test void test(MockServer mockServer) throws IOException { HttpResponse httpResponse = Request.Get(mockServer.getUrl() + &quot;/articles.json&quot;).execute().returnResponse(); assertThat(httpResponse.getStatusLine().getStatusCode(), is(equalTo(200))); } ``` This helps with getting the base URL of the mock server, especially when a random port is used. ## Changing the directory pact files are written to By default, pact files are written to `target/pacts` (or `build/pacts` if you use Gradle), but this can be overwritten with the `pact.rootDir` system property. This property needs to be set on the test JVM as most build tools will fork a new JVM to run the tests. For Gradle, add this to your build.gradle: ```groovy test { systemProperties[&apos;pact.rootDir&apos;] = &quot;$buildDir/custom-pacts-directory&quot; } ``` For maven, use the systemPropertyVariables configuration: ```xml &lt;project&gt; [...] &lt;build&gt; &lt;plugins&gt; &lt;plugin&gt; &lt;groupId&gt;org.apache.maven.plugins&lt;/groupId&gt; &lt;artifactId&gt;maven-surefire-plugin&lt;/artifactId&gt; &lt;version&gt;2.18&lt;/version&gt; &lt;configuration&gt; &lt;systemPropertyVariables&gt; &lt;pact.rootDir&gt;some/other/directory&lt;/pact.rootDir&gt; &lt;buildDirectory&gt;${project.build.directory}&lt;/buildDirectory&gt; [...] &lt;/systemPropertyVariables&gt; &lt;/configuration&gt; &lt;/plugin&gt; &lt;/plugins&gt; &lt;/build&gt; [...] &lt;/project&gt; ``` For SBT: ```scala fork in Test := true, javaOptions in Test := Seq(&quot;-Dpact.rootDir=some/other/directory&quot;) ``` ### Using `@PactFolder` annotation [3.6.2+] You can override the directory the pacts are written in a test by adding the `@PactFolder` annotation to the test class. ## Forcing pact files to be overwritten (3.6.5+) By default, when the pact file is written, it will be merged with any existing pact file. To force the file to be overwritten, set the Java system property `pact.writer.overwrite` to `true`. ## Unsupported The current implementation does not support tests with multiple providers. This will be added in a later release. # Having values injected from provider state callbacks (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. The following DSL methods all you to set an expression that will be parsed with the values returned from the provider states: For JSON bodies, use `valueFromProviderState`.&lt;br/&gt; For headers, use `headerFromProviderState`.&lt;br/&gt; For query parameters, use `queryParameterFromProviderState`.&lt;br/&gt; For paths, use `pathFromProviderState`. For example, assume that an API call is made to get the details of a user by ID. A provider state can be defined that specifies that the user must be exist, but the ID will be created when the user is created. So we can then define an expression for the path where the ID will be replaced with the value returned from the provider state callback. ```java .pathFromProviderState(&quot;/api/users/${id}&quot;, &quot;/api/users/100&quot;) ``` You can also just use the key instead of an expression: ```java .valueFromProviderState(&apos;userId&apos;, &apos;userId&apos;, 100) // will look value using userId as the key ```

Group: au.com.dius Artifact: pact-jvm-consumer-junit5_2.12
Show all versions Show documentation Show source 
 

3 downloads
Artifact pact-jvm-consumer-junit5_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 2
Dependencies pact-jvm-consumer_2.12, junit-jupiter-api,
There are maybe transitive dependencies!

pact-jvm-consumer-junit5 from group au.com.dius (version 4.0.10)

pact-jvm-consumer-junit5 ======================== JUnit 5 support for Pact consumer tests ## Dependency The library is available on maven central using: * group-id = `au.com.dius` * artifact-id = `pact-jvm-consumer-junit5` * version-id = `4.0.x` ## Usage ### 1. Add the Pact consumer test extension to the test class. To write Pact consumer tests with JUnit 5, you need to add `@ExtendWith(PactConsumerTestExt)` to your test class. This replaces the `PactRunner` used for JUnit 4 tests. The rest of the test follows a similar pattern as for JUnit 4 tests. ```java @ExtendWith(PactConsumerTestExt.class) class ExampleJavaConsumerPactTest { ``` ### 2. create a method annotated with `@Pact` that returns the interactions for the test For each test (as with JUnit 4), you need to define a method annotated with the `@Pact` annotation that returns the interactions for the test. ```java @Pact(provider=&quot;ArticlesProvider&quot;, consumer=&quot;test_consumer&quot;) public RequestResponsePact createPact(PactDslWithProvider builder) { return builder .given(&quot;test state&quot;) .uponReceiving(&quot;ExampleJavaConsumerPactTest test interaction&quot;) .path(&quot;/articles.json&quot;) .method(&quot;GET&quot;) .willRespondWith() .status(200) .body(&quot;{\&quot;responsetest\&quot;: true}&quot;) .toPact(); } ``` ### 3. Link the mock server with the interactions for the test with `@PactTestFor` Then the final step is to use the `@PactTestFor` annotation to tell the Pact extension how to setup the Pact test. You can either put this annotation on the test class, or on the test method. For examples see [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) and [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy). The `@PactTestFor` annotation allows you to control the mock server in the same way as the JUnit 4 `PactProviderRule`. It allows you to set the hostname to bind to (default is `localhost`) and the port (default is to use a random port). You can also set the Pact specification version to use (default is V3). ```java @ExtendWith(PactConsumerTestExt.class) @PactTestFor(providerName = &quot;ArticlesProvider&quot;) public class ExampleJavaConsumerPactTest { ``` **NOTE on the hostname**: The mock server runs in the same JVM as the test, so the only valid values for hostname are: | hostname | result | | -------- | ------ | | `localhost` | binds to the address that localhost points to (normally the loopback adapter) | | `127.0.0.1` or `::1` | binds to the loopback adapter | | host name | binds to the default interface that the host machines DNS name resolves to | | `0.0.0.0` or `::` | binds to the all interfaces on the host machine | #### Matching the interactions by provider name If you set the `providerName` on the `@PactTestFor` annotation, then the first method with a `@Pact` annotation with the same provider name will be used. See [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) for an example. #### Matching the interactions by method name If you set the `pactMethod` on the `@PactTestFor` annotation, then the method with the provided name will be used (it still needs a `@Pact` annotation). See [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy) for an example. ### Injecting the mock server into the test You can get the mock server injected into the test method by adding a `MockServer` parameter to the test method. ```java @Test void test(MockServer mockServer) throws IOException { HttpResponse httpResponse = Request.Get(mockServer.getUrl() + &quot;/articles.json&quot;).execute().returnResponse(); assertThat(httpResponse.getStatusLine().getStatusCode(), is(equalTo(200))); } ``` This helps with getting the base URL of the mock server, especially when a random port is used. ## Changing the directory pact files are written to By default, pact files are written to `target/pacts` (or `build/pacts` if you use Gradle), but this can be overwritten with the `pact.rootDir` system property. This property needs to be set on the test JVM as most build tools will fork a new JVM to run the tests. For Gradle, add this to your build.gradle: ```groovy test { systemProperties[&apos;pact.rootDir&apos;] = &quot;$buildDir/custom-pacts-directory&quot; } ``` For maven, use the systemPropertyVariables configuration: ```xml &lt;project&gt; [...] &lt;build&gt; &lt;plugins&gt; &lt;plugin&gt; &lt;groupId&gt;org.apache.maven.plugins&lt;/groupId&gt; &lt;artifactId&gt;maven-surefire-plugin&lt;/artifactId&gt; &lt;version&gt;2.18&lt;/version&gt; &lt;configuration&gt; &lt;systemPropertyVariables&gt; &lt;pact.rootDir&gt;some/other/directory&lt;/pact.rootDir&gt; &lt;buildDirectory&gt;${project.build.directory}&lt;/buildDirectory&gt; [...] &lt;/systemPropertyVariables&gt; &lt;/configuration&gt; &lt;/plugin&gt; &lt;/plugins&gt; &lt;/build&gt; [...] &lt;/project&gt; ``` For SBT: ```scala fork in Test := true, javaOptions in Test := Seq(&quot;-Dpact.rootDir=some/other/directory&quot;) ``` ### Using `@PactFolder` annotation You can override the directory the pacts are written in a test by adding the `@PactFolder` annotation to the test class. ## Forcing pact files to be overwritten (3.6.5+) By default, when the pact file is written, it will be merged with any existing pact file. To force the file to be overwritten, set the Java system property `pact.writer.overwrite` to `true`. ## Unsupported The current implementation does not support tests with multiple providers. This will be added in a later release. # Having values injected from provider state callbacks (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. The following DSL methods all you to set an expression that will be parsed with the values returned from the provider states: For JSON bodies, use `valueFromProviderState`.&lt;br/&gt; For headers, use `headerFromProviderState`.&lt;br/&gt; For query parameters, use `queryParameterFromProviderState`.&lt;br/&gt; For paths, use `pathFromProviderState`. For example, assume that an API call is made to get the details of a user by ID. A provider state can be defined that specifies that the user must be exist, but the ID will be created when the user is created. So we can then define an expression for the path where the ID will be replaced with the value returned from the provider state callback. ```java .pathFromProviderState(&quot;/api/users/${id}&quot;, &quot;/api/users/100&quot;) ``` You can also just use the key instead of an expression: ```java .valueFromProviderState(&apos;userId&apos;, &apos;userId&apos;, 100) // will look value using userId as the key ```

Group: au.com.dius Artifact: pact-jvm-consumer-junit5
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-consumer-junit5
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 2
Dependencies junit-jupiter-api, pact-jvm-consumer,
There are maybe transitive dependencies!

pact-jvm-provider-lein_2.12 from group au.com.dius (version 3.6.15)

# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+] Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all configured pacts against your provider. ## To Use It ### 1. Add the plugin to your project plugins, preferably in it&apos;s own profile. ```clojure :profiles { :pact { :plugins [[au.com.dius/pact-jvm-provider-lein_2.11 &quot;3.2.11&quot; :exclusions [commons-logging]]] :dependencies [[ch.qos.logback/logback-core &quot;1.1.3&quot;] [ch.qos.logback/logback-classic &quot;1.1.3&quot;] [org.apache.httpcomponents/httpclient &quot;4.4.1&quot;]] }}} ``` ### 2. Define the pacts between your consumers and providers You define all the providers and consumers within the `:pact` configuration element of your project. ```clojure :pact { :service-providers { ; You can define as many as you need, but each must have a unique name :provider1 { ; All the provider properties are optional, and have sensible defaults (shown below) :protocol &quot;http&quot; :host &quot;localhost&quot; :port 8080 :path &quot;/&quot; :has-pact-with { ; Again, you can define as many consumers for each provider as you need, but each must have a unique name :consumer1 { ; pact file can be either a path or an URL :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` ### 3. Execute `lein with-profile pact pact-verify` You will have to have your provider running for this to pass. ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `:insecure true` on the provider. ```clojure :pact { :service-providers { :provider1 { :protocol &quot;https&quot; :host &quot;localhost&quot; :port 8443 :insecure true :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```clojure :pact { :service-providers { :provider1 { :protocol &quot;https&quot; :host &quot;localhost&quot; :port 8443 :trust-store &quot;relative/path/to/trustStore.jks&quot; :trust-store-password &quot;changeme&quot; :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` `:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can&apos;t be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest object as a parameter. ```clojure :pact { :service-providers { :provider1 { ; function that adds an Authorization header to each request :request-filter #(.addHeader % &quot;Authorization&quot; &quot;oauth-token eyJhbGciOiJSUzI1NiIsIm...&quot;) :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`. The function will receive the provider info as a parameter. ## Turning off URL decoding of the paths in the pact file [version 3.3.3+] By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Plugin Properties The following plugin options can be specified on the command line: |Property|Description| |--------|-----------| |:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]| |:pact.filter.consumers|Comma seperated list of consumer names to verify| |:pact.filter.description|Only verify interactions whose description match the provided regular expression| |:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| |:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to &apos;true&apos; [version 3.5.18+]| |:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to &apos;true&apos;| Example, to run verification only for a particular consumer: ``` $ lein with-profile pact pact-verify :pact.filter.consumers=:consumer2 ``` ## Provider States For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body` controls if the state is passed in the request body or as a query parameter. These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given. ```clojure :pact { :service-providers { :provider1 { :state-change-url &quot;http://localhost:8080/tasks/pactStateChange&quot; :state-change-uses-body false ; defaults to true :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as JSON in the body of the request. If it is set to false, it will passed as a query parameter. As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made. #### Returning values that can be injected (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like &apos;/api/user/${id}&apos; for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body. ## Filtering the interactions that are verified You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`. Adding `:pact.filter.consumers=:consumer1,:consumer2` to the command line will only run the pact files for those consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with &apos;a request for payment&apos;. `:pact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a provider state. ## Starting and shutting down your provider For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks together. So, by creating a `start-app` and `terminate-app` alias, you could so something like: $ lein with-profile pact do start-app, pact-verify, terminate-app However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task` and `:terminate-provider-task` on the provider. ```clojure :aliases {&quot;start-app&quot; ^{:doc &quot;Starts the app&quot;} [&quot;tasks to start app ...&quot;] ; insert tasks to start the app here &quot;terminate-app&quot; ^{:doc &quot;Kills the app&quot;} [&quot;tasks to terminate app ...&quot;] ; insert tasks to stop the app here } :pact { :service-providers { :provider1 { :start-provider-task &quot;start-app&quot; :terminate-provider-task &quot;terminate-app&quot; :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` Then you can just run: $ lein with-profile pact pact-verify and the `start-app` and `terminate-app` tasks will run before and after the provider verification. ## Specifying the provider hostname at runtime [3.0.4+] If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or AWS instance), you can give an anonymous function as the provider host that returns the host name. The function will receive the provider information as a parameter. ```clojure :pact { :service-providers { :provider1 { :host #(calculate-host-name %) :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ```

Group: au.com.dius Artifact: pact-jvm-provider-lein_2.12
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-lein_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies pact-jvm-provider_2.12, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!

pact-jvm-provider-lein from group au.com.dius (version 4.0.10)

# Leiningen plugin to verify a provider Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all configured pacts against your provider. ## To Use It ### 1. Add the plugin to your project plugins, preferably in it&apos;s own profile. ```clojure :profiles { :pact { :plugins [[au.com.dius/pact-jvm-provider-lein &quot;4.0.0&quot; :exclusions [commons-logging]]] :dependencies [[ch.qos.logback/logback-core &quot;1.1.3&quot;] [ch.qos.logback/logback-classic &quot;1.1.3&quot;] [org.apache.httpcomponents/httpclient &quot;4.4.1&quot;]] }}} ``` ### 2. Define the pacts between your consumers and providers You define all the providers and consumers within the `:pact` configuration element of your project. ```clojure :pact { :service-providers { ; You can define as many as you need, but each must have a unique name :provider1 { ; All the provider properties are optional, and have sensible defaults (shown below) :protocol &quot;http&quot; :host &quot;localhost&quot; :port 8080 :path &quot;/&quot; :has-pact-with { ; Again, you can define as many consumers for each provider as you need, but each must have a unique name :consumer1 { ; pact file can be either a path or an URL :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` ### 3. Execute `lein with-profile pact pact-verify` You will have to have your provider running for this to pass. ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `:insecure true` on the provider. ```clojure :pact { :service-providers { :provider1 { :protocol &quot;https&quot; :host &quot;localhost&quot; :port 8443 :insecure true :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```clojure :pact { :service-providers { :provider1 { :protocol &quot;https&quot; :host &quot;localhost&quot; :port 8443 :trust-store &quot;relative/path/to/trustStore.jks&quot; :trust-store-password &quot;changeme&quot; :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` `:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can&apos;t be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest object as a parameter. ```clojure :pact { :service-providers { :provider1 { ; function that adds an Authorization header to each request :request-filter #(.addHeader % &quot;Authorization&quot; &quot;oauth-token eyJhbGciOiJSUzI1NiIsIm...&quot;) :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`. The function will receive the provider info as a parameter. ## Turning off URL decoding of the paths in the pact file By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Plugin Properties The following plugin options can be specified on the command line: |Property|Description| |--------|-----------| |:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]| |:pact.filter.consumers|Comma seperated list of consumer names to verify| |:pact.filter.description|Only verify interactions whose description match the provided regular expression| |:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| |:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to &apos;true&apos; [version 3.5.18+]| |:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to &apos;true&apos;| Example, to run verification only for a particular consumer: ``` $ lein with-profile pact pact-verify :pact.filter.consumers=:consumer2 ``` ## Provider States For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body` controls if the state is passed in the request body or as a query parameter. These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given. ```clojure :pact { :service-providers { :provider1 { :state-change-url &quot;http://localhost:8080/tasks/pactStateChange&quot; :state-change-uses-body false ; defaults to true :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as JSON in the body of the request. If it is set to false, it will passed as a query parameter. As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made. #### Returning values that can be injected (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like &apos;/api/user/${id}&apos; for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body. ## Filtering the interactions that are verified You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`. Adding `:pact.filter.consumers=:consumer1,:consumer2` to the command line will only run the pact files for those consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with &apos;a request for payment&apos;. `:pact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a provider state. ## Starting and shutting down your provider For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks together. So, by creating a `start-app` and `terminate-app` alias, you could so something like: $ lein with-profile pact do start-app, pact-verify, terminate-app However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task` and `:terminate-provider-task` on the provider. ```clojure :aliases {&quot;start-app&quot; ^{:doc &quot;Starts the app&quot;} [&quot;tasks to start app ...&quot;] ; insert tasks to start the app here &quot;terminate-app&quot; ^{:doc &quot;Kills the app&quot;} [&quot;tasks to terminate app ...&quot;] ; insert tasks to stop the app here } :pact { :service-providers { :provider1 { :start-provider-task &quot;start-app&quot; :terminate-provider-task &quot;terminate-app&quot; :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` Then you can just run: $ lein with-profile pact pact-verify and the `start-app` and `terminate-app` tasks will run before and after the provider verification. ## Specifying the provider hostname at runtime If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or AWS instance), you can give an anonymous function as the provider host that returns the host name. The function will receive the provider information as a parameter. ```clojure :pact { :service-providers { :provider1 { :host #(calculate-host-name %) :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ```

Group: au.com.dius Artifact: pact-jvm-provider-lein
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-lein
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 10
Dependencies pact-jvm-provider, clojure, core.match, leiningen-core, maven-aether-provider, aether-connector-file, aether-connector-wagon, httpclient, jansi, groovy,
There are maybe transitive dependencies!



Page 286 from 288 (items total 2878)


© 2015 - 2024 Weber Informatics LLC | Privacy Policy