Download JAR files tagged by variance with all dependencies
hppcrt from group com.github.vsonnier (version 0.7.5)
High Performance Primitive Collections Realtime
(fork of HPPC from Carrotsearch)
Fundamental data structures (maps, sets, lists, queues, heaps, sorts) generated for
combinations of object and primitive types to conserve JVM memory and speed
up execution. The Realtime fork intends to extend the existing collections, by tweaking to remove any dynamic allocations at runtime,
and to obtain low variance execution times whatever the input nature.
8 downloads
Artifact hppcrt
Group com.github.vsonnier
Version 0.7.5
Last update 11. July 2017
Organization not specified
URL Not specified
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
Group com.github.vsonnier
Version 0.7.5
Last update 11. July 2017
Organization not specified
URL Not specified
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
multiBoostAB from group nz.ac.waikato.cms.weka (version 1.0.2)
Class for boosting a classifier using the MultiBoosting method.
MultiBoosting is an extension to the highly successful AdaBoost technique for forming decision committees. MultiBoosting can be viewed as combining AdaBoost with wagging. It is able to harness both AdaBoost's high bias and variance reduction with wagging's superior variance reduction. Using C4.5 as the base learning algorithm, Multi-boosting is demonstrated to produce decision committees with lower error than either AdaBoost or wagging significantly more often than the reverse over a large representative cross-section of UCI data sets. It offers the further advantage over AdaBoost of suiting parallel execution.
For more information, see
Geoffrey I. Webb (2000). MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning. Vol.40(No.2).
Group: nz.ac.waikato.cms.weka Artifact: multiBoostAB
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact multiBoostAB
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/multiBoostAB
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/multiBoostAB
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
multiLayerPerceptrons from group nz.ac.waikato.cms.weka (version 1.0.10)
This package currently contains classes for training multilayer perceptrons with one hidden layer, where the number of hidden units is user specified. MLPClassifier can be used for classification problems and MLPRegressor is the corresponding class for numeric prediction tasks. The former has as many output units as there are classes, the latter only one output unit. Both minimise a penalised squared error with a quadratic penalty on the (non-bias) weights, i.e., they implement "weight decay", where this penalised error is averaged over all training instances. The size of the penalty can be determined by the user by modifying the "ridge" parameter to control overfitting. The sum of squared weights is multiplied by this parameter before added to the squared error. Both classes use BFGS optimisation by default to find parameters that correspond to a local minimum of the error function. but optionally conjugated gradient descent is available, which can be faster for problems with many parameters. Logistic functions are used as the activation functions for all units apart from the output unit in MLPRegressor, which employs the identity function. Input attributes are standardised to zero mean and unit variance. MLPRegressor also rescales the target attribute (i.e., "class") using standardisation. All network parameters are initialised with small normally distributed random values.
Group: nz.ac.waikato.cms.weka Artifact: multiLayerPerceptrons
Show all versions Show documentation Show source
Show all versions Show documentation Show source
10 downloads
Artifact multiLayerPerceptrons
Group nz.ac.waikato.cms.weka
Version 1.0.10
Last update 31. October 2016
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/multiLayerPerceptrons
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.10
Last update 31. October 2016
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/multiLayerPerceptrons
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Page 1 from 1 (items total 3)