Download JAR files tagged by wagging with all dependencies
multiBoostAB from group nz.ac.waikato.cms.weka (version 1.0.2)
Class for boosting a classifier using the MultiBoosting method.
MultiBoosting is an extension to the highly successful AdaBoost technique for forming decision committees. MultiBoosting can be viewed as combining AdaBoost with wagging. It is able to harness both AdaBoost's high bias and variance reduction with wagging's superior variance reduction. Using C4.5 as the base learning algorithm, Multi-boosting is demonstrated to produce decision committees with lower error than either AdaBoost or wagging significantly more often than the reverse over a large representative cross-section of UCI data sets. It offers the further advantage over AdaBoost of suiting parallel execution.
For more information, see
Geoffrey I. Webb (2000). MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning. Vol.40(No.2).
Group: nz.ac.waikato.cms.weka Artifact: multiBoostAB
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact multiBoostAB
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/multiBoostAB
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/multiBoostAB
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Page 1 from 1 (items total 1)