target.apidocs.com.google.api.services.bigquery.model.EvaluationMetrics.html Maven / Gradle / Ivy
EvaluationMetrics (BigQuery API v2-rev20240905-2.0.0)
com.google.api.services.bigquery.model
Class EvaluationMetrics
- java.lang.Object
-
- java.util.AbstractMap<String,Object>
-
- com.google.api.client.util.GenericData
-
- com.google.api.client.json.GenericJson
-
- com.google.api.services.bigquery.model.EvaluationMetrics
-
public final class EvaluationMetrics
extends com.google.api.client.json.GenericJson
Evaluation metrics of a model. These are either computed on all training data or just the eval
data based on whether eval data was used during training. These are not present for imported
models.
This is the Java data model class that specifies how to parse/serialize into the JSON that is
transmitted over HTTP when working with the BigQuery API. For a detailed explanation see:
https://developers.google.com/api-client-library/java/google-http-java-client/json
- Author:
- Google, Inc.
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class com.google.api.client.util.GenericData
com.google.api.client.util.GenericData.Flags
-
Nested classes/interfaces inherited from class java.util.AbstractMap
AbstractMap.SimpleEntry<K,V>, AbstractMap.SimpleImmutableEntry<K,V>
-
Constructor Summary
Constructors
Constructor and Description
EvaluationMetrics()
-
Method Summary
All Methods Instance Methods Concrete Methods
Modifier and Type
Method and Description
EvaluationMetrics
clone()
ArimaForecastingMetrics
getArimaForecastingMetrics()
Populated for ARIMA models.
BinaryClassificationMetrics
getBinaryClassificationMetrics()
Populated for binary classification/classifier models.
ClusteringMetrics
getClusteringMetrics()
Populated for clustering models.
DimensionalityReductionMetrics
getDimensionalityReductionMetrics()
Evaluation metrics when the model is a dimensionality reduction model, which currently includes
PCA.
MultiClassClassificationMetrics
getMultiClassClassificationMetrics()
Populated for multi-class classification/classifier models.
RankingMetrics
getRankingMetrics()
Populated for implicit feedback type matrix factorization models.
RegressionMetrics
getRegressionMetrics()
Populated for regression models and explicit feedback type matrix factorization models.
EvaluationMetrics
set(String fieldName,
Object value)
EvaluationMetrics
setArimaForecastingMetrics(ArimaForecastingMetrics arimaForecastingMetrics)
Populated for ARIMA models.
EvaluationMetrics
setBinaryClassificationMetrics(BinaryClassificationMetrics binaryClassificationMetrics)
Populated for binary classification/classifier models.
EvaluationMetrics
setClusteringMetrics(ClusteringMetrics clusteringMetrics)
Populated for clustering models.
EvaluationMetrics
setDimensionalityReductionMetrics(DimensionalityReductionMetrics dimensionalityReductionMetrics)
Evaluation metrics when the model is a dimensionality reduction model, which currently includes
PCA.
EvaluationMetrics
setMultiClassClassificationMetrics(MultiClassClassificationMetrics multiClassClassificationMetrics)
Populated for multi-class classification/classifier models.
EvaluationMetrics
setRankingMetrics(RankingMetrics rankingMetrics)
Populated for implicit feedback type matrix factorization models.
EvaluationMetrics
setRegressionMetrics(RegressionMetrics regressionMetrics)
Populated for regression models and explicit feedback type matrix factorization models.
-
Methods inherited from class com.google.api.client.json.GenericJson
getFactory, setFactory, toPrettyString, toString
-
Methods inherited from class com.google.api.client.util.GenericData
entrySet, equals, get, getClassInfo, getUnknownKeys, hashCode, put, putAll, remove, setUnknownKeys
-
Methods inherited from class java.util.AbstractMap
clear, containsKey, containsValue, isEmpty, keySet, size, values
-
Methods inherited from class java.lang.Object
finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface java.util.Map
compute, computeIfAbsent, computeIfPresent, forEach, getOrDefault, merge, putIfAbsent, remove, replace, replace, replaceAll
-
-
Method Detail
-
getArimaForecastingMetrics
public ArimaForecastingMetrics getArimaForecastingMetrics()
Populated for ARIMA models.
- Returns:
- value or
null
for none
-
setArimaForecastingMetrics
public EvaluationMetrics setArimaForecastingMetrics(ArimaForecastingMetrics arimaForecastingMetrics)
Populated for ARIMA models.
- Parameters:
arimaForecastingMetrics
- arimaForecastingMetrics or null
for none
-
getBinaryClassificationMetrics
public BinaryClassificationMetrics getBinaryClassificationMetrics()
Populated for binary classification/classifier models.
- Returns:
- value or
null
for none
-
setBinaryClassificationMetrics
public EvaluationMetrics setBinaryClassificationMetrics(BinaryClassificationMetrics binaryClassificationMetrics)
Populated for binary classification/classifier models.
- Parameters:
binaryClassificationMetrics
- binaryClassificationMetrics or null
for none
-
getClusteringMetrics
public ClusteringMetrics getClusteringMetrics()
Populated for clustering models.
- Returns:
- value or
null
for none
-
setClusteringMetrics
public EvaluationMetrics setClusteringMetrics(ClusteringMetrics clusteringMetrics)
Populated for clustering models.
- Parameters:
clusteringMetrics
- clusteringMetrics or null
for none
-
getDimensionalityReductionMetrics
public DimensionalityReductionMetrics getDimensionalityReductionMetrics()
Evaluation metrics when the model is a dimensionality reduction model, which currently includes
PCA.
- Returns:
- value or
null
for none
-
setDimensionalityReductionMetrics
public EvaluationMetrics setDimensionalityReductionMetrics(DimensionalityReductionMetrics dimensionalityReductionMetrics)
Evaluation metrics when the model is a dimensionality reduction model, which currently includes
PCA.
- Parameters:
dimensionalityReductionMetrics
- dimensionalityReductionMetrics or null
for none
-
getMultiClassClassificationMetrics
public MultiClassClassificationMetrics getMultiClassClassificationMetrics()
Populated for multi-class classification/classifier models.
- Returns:
- value or
null
for none
-
setMultiClassClassificationMetrics
public EvaluationMetrics setMultiClassClassificationMetrics(MultiClassClassificationMetrics multiClassClassificationMetrics)
Populated for multi-class classification/classifier models.
- Parameters:
multiClassClassificationMetrics
- multiClassClassificationMetrics or null
for none
-
getRankingMetrics
public RankingMetrics getRankingMetrics()
Populated for implicit feedback type matrix factorization models.
- Returns:
- value or
null
for none
-
setRankingMetrics
public EvaluationMetrics setRankingMetrics(RankingMetrics rankingMetrics)
Populated for implicit feedback type matrix factorization models.
- Parameters:
rankingMetrics
- rankingMetrics or null
for none
-
getRegressionMetrics
public RegressionMetrics getRegressionMetrics()
Populated for regression models and explicit feedback type matrix factorization models.
- Returns:
- value or
null
for none
-
setRegressionMetrics
public EvaluationMetrics setRegressionMetrics(RegressionMetrics regressionMetrics)
Populated for regression models and explicit feedback type matrix factorization models.
- Parameters:
regressionMetrics
- regressionMetrics or null
for none
-
set
public EvaluationMetrics set(String fieldName,
Object value)
- Overrides:
set
in class com.google.api.client.json.GenericJson
-
clone
public EvaluationMetrics clone()
- Overrides:
clone
in class com.google.api.client.json.GenericJson
Copyright © 2011–2024 Google. All rights reserved.
© 2015 - 2025 Weber Informatics LLC | Privacy Policy