lphy.base.evolution.continuous.PhyloOU Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lphy-base Show documentation
Show all versions of lphy-base Show documentation
The standard library of LPhy, which contains the required generative distributions and basic functions.
The newest version!
package lphy.base.evolution.continuous;
import lphy.base.evolution.alignment.ContinuousCharacterData;
import lphy.base.evolution.tree.TimeTree;
import lphy.core.model.RandomVariable;
import lphy.core.model.Value;
import lphy.core.model.annotation.GeneratorCategory;
import lphy.core.model.annotation.GeneratorInfo;
import lphy.core.model.annotation.ParameterInfo;
import org.apache.commons.math3.distribution.NormalDistribution;
import java.util.SortedMap;
import java.util.TreeMap;
/**
* Created by Alexei Drummond on 2/02/20.
*/
public class PhyloOU extends PhyloBrownian {
protected Value theta;
protected Value alpha;
protected Value branchThetas;
public static final String thetaParamName = "theta";
public static final String branchThetasParamName = "branchThetas";
public static final String alphaParamName = "alpha";
public PhyloOU(@ParameterInfo(name = treeParamName, description = "the time tree.") Value tree,
@ParameterInfo(name = diffRateParamName, description = "the variance of the underlying Brownian process. This is not the equilibrium variance of the OU process.") Value variance,
@ParameterInfo(name = thetaParamName, description = "the 'optimal' value that the long-term process is centered around.", optional = true) Value theta,
@ParameterInfo(name = alphaParamName, description = "the drift term that determines the rate of drift towards the optimal value.") Value alpha,
@ParameterInfo(name = y0ParamName, description = "the value of continuous trait at the root.") Value y0,
@ParameterInfo(name = branchThetasParamName, description = "the 'optimal' value for each branch in the tree.", optional = true) Value branchThetas
) {
super(tree, variance, y0);
this.theta = theta;
this.branchThetas = branchThetas;
this.alpha = alpha;
}
@Override
public SortedMap getParams() {
SortedMap map = new TreeMap<>();
map.put(treeParamName, tree);
map.put(diffRateParamName, diffusionRate);
if (theta != null) map.put(thetaParamName, theta);
map.put(alphaParamName, alpha);
map.put(y0ParamName, y0);
if (branchThetas != null) map.put(branchThetasParamName, branchThetas);
return map;
}
@Override
public void setParam(String paramName, Value value) {
if (paramName.equals(treeParamName)) tree = value;
else if (paramName.equals(diffRateParamName)) diffusionRate = value;
else if (paramName.equals(thetaParamName)) theta = value;
else if (paramName.equals(branchThetasParamName)) branchThetas = value;
else if (paramName.equals(alphaParamName)) alpha = value;
else if (paramName.equals(y0ParamName)) y0 = value;
else throw new RuntimeException("Unrecognised parameter name: " + paramName);
}
protected double sampleNewState(double initialState, double time, int nodeIndex) {
double th;
if (theta != null) {
th = theta.value();
} else {
th = branchThetas.value()[nodeIndex];
}
double a = alpha.value();
double v = diffusionRate.value() / (2 * a);
double weight = Math.exp(-a * time);
double mean = (1.0 - weight) * th + weight * initialState;
double variance = v * (1.0 - Math.exp(-2.0 * a * time));
// use code available since apache math 3.1, see #215
NormalDistribution distribution = new NormalDistribution(random, mean, Math.sqrt(variance),
NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
return handleBoundaries(distribution.sample());
}
@GeneratorInfo(name = "PhyloOU", verbClause = "is assumed to have evolved under",
narrativeName = "phylogenetic Ornstein-Ulhenbeck process",
category = GeneratorCategory.PHYLO_LIKELIHOOD, examples = {"simplePhyloOU.lphy"},
description = "The phylogenetic Ornstein-Ulhenbeck distribution. A continous trait is simulated for every leaf node, and every direct ancestor node with an id.")
public RandomVariable sample() {
return super.sample();
}
}