All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download nz.ac.waikato.cms.weka.thirdparty JAR files with all dependencies


jaxb-fluent-api from group org.andromda.thirdparty.jaxb2_commons (version 2.2)

Causes JAXB RI 2.2 XJC to generate additional methods that allows method chaining. Method chaining is useful when building object tree in memory, allowing the code to be done in a concise way. The code that uses this plugin can still run with any JAXB2 implementation.

Group: org.andromda.thirdparty.jaxb2_commons Artifact: jaxb-fluent-api
Show documentation Show source 
Download jaxb-fluent-api.jar (2.2)
 

0 downloads


multiInstanceLearning from group nz.ac.waikato.cms.weka (version 1.0.7)

A collection of multi-instance learning classifiers. Includes the Citation KNN method, several variants of the diverse density method, support vector machines for multi-instance learning, simple wrappers for applying standard propositional learners to multi-instance data, decision tree and rule learners, and some other methods.

Group: nz.ac.waikato.cms.weka Artifact: multiInstanceLearning
Show documentation Show source 
Download multiInstanceLearning.jar (1.0.7)
 

0 downloads


raceSearch from group nz.ac.waikato.cms.weka (version 1.0.2)

Races the cross validation error of competing attribute subsets. Use in conjuction with a ClassifierSubsetEval. RaceSearch has four modes: forward selection races all single attribute additions to a base set (initially no attributes), selects the winner to become the new base set and then iterates until there is no improvement over the base set. Backward elimination is similar but the initial base set has all attributes included and races all single attribute deletions. Schemata search is a bit different. Each iteration a series of races are run in parallel. Each race in a set determines whether a particular attribute should be included or not---ie the race is between the attribute being "in" or "out". The other attributes for this race are included or excluded randomly at each point in the evaluation. As soon as one race has a clear winner (ie it has been decided whether a particular attribute should be inor not) then the next set of races begins, using the result of the winning race from the previous iteration as new base set. Rank race first ranks the attributes using an attribute evaluator and then races the ranking. The race includes no attributes, the top ranked attribute, the top two attributes, the top three attributes, etc. It is also possible to generate a raked list of attributes through the forward racing process. If generateRanking is set to true then a complete forward race will be run---that is, racing continues until all attributes have been selected. The order that they are added in determines a complete ranking of all the attributes. Racing uses paired and unpaired t-tests on cross-validation errors of competing subsets. When there is a significant difference between the means of the errors of two competing subsets then the poorer of the two can be eliminated from the race. Similarly, if there is no significant difference between the mean errors of two competing subsets and they are within some threshold of each other, then one can be eliminated from the race.

Group: nz.ac.waikato.cms.weka Artifact: raceSearch
Show documentation Show source 
Download raceSearch.jar (1.0.2)
 

0 downloads
Artifact raceSearch
Group nz.ac.waikato.cms.weka
Version 1.0.2


scrooge-generator_2.10 from group co.actioniq.thirdparty.com.twitter (version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)

scrooge-generator

Group: co.actioniq.thirdparty.com.twitter Artifact: scrooge-generator_2.10
Show documentation Show source 
Download scrooge-generator_2.10.jar (3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)
 

0 downloads
Artifact scrooge-generator_2.10
Group co.actioniq.thirdparty.com.twitter
Version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f


scrooge-ostrich_2.10 from group co.actioniq.thirdparty.com.twitter (version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)

scrooge-ostrich

Group: co.actioniq.thirdparty.com.twitter Artifact: scrooge-ostrich_2.10
Show documentation Show source 
Download scrooge-ostrich_2.10.jar (3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)
 

0 downloads
Artifact scrooge-ostrich_2.10
Group co.actioniq.thirdparty.com.twitter
Version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f


scrooge-serializer_2.10 from group co.actioniq.thirdparty.com.twitter (version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)

scrooge-serializer

Group: co.actioniq.thirdparty.com.twitter Artifact: scrooge-serializer_2.10
Show documentation Show source 
Download scrooge-serializer_2.10.jar (3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)
 

0 downloads
Artifact scrooge-serializer_2.10
Group co.actioniq.thirdparty.com.twitter
Version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f


scrooge-runtime_2.10 from group co.actioniq.thirdparty.com.twitter (version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)

scrooge-runtime

Group: co.actioniq.thirdparty.com.twitter Artifact: scrooge-runtime_2.10
Show documentation Show source 
Download scrooge-runtime_2.10.jar (3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)
 

0 downloads
Artifact scrooge-runtime_2.10
Group co.actioniq.thirdparty.com.twitter
Version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f


scrooge-core_2.10 from group co.actioniq.thirdparty.com.twitter (version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)

scrooge-core

Group: co.actioniq.thirdparty.com.twitter Artifact: scrooge-core_2.10
Show documentation Show source 
Download scrooge-core_2.10.jar (3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)
 

0 downloads
Artifact scrooge-core_2.10
Group co.actioniq.thirdparty.com.twitter
Version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f


scrooge_2.10 from group co.actioniq.thirdparty.com.twitter (version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)

scrooge

Group: co.actioniq.thirdparty.com.twitter Artifact: scrooge_2.10
Show documentation Show source 
Download scrooge_2.10.jar (3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f)
 

0 downloads
Artifact scrooge_2.10
Group co.actioniq.thirdparty.com.twitter
Version 3.17.0-4232bc888d6b09f0bf41930956b39dd8f398d96f


thirdparty-parent from group com.minlia.cloud.thirdparty (version 1.0.0.RELEASE)

Group: com.minlia.cloud.thirdparty Artifact: thirdparty-parent
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact thirdparty-parent
Group com.minlia.cloud.thirdparty
Version 1.0.0.RELEASE


classificationViaClustering from group nz.ac.waikato.cms.weka (version 1.0.3)

A simple meta-classifier that uses a clusterer for classification. For cluster algorithms that use a fixed number of clusterers, like SimpleKMeans, the user has to make sure that the number of clusters to generate are the same as the number of class labels in the dataset in order to obtain a useful model. Note: at prediction time, a missing value is returned if no cluster is found for the instance. The code is based on the 'clusters to classes' functionality of the weka.clusterers.ClusterEvaluation class by Mark Hall.

Group: nz.ac.waikato.cms.weka Artifact: classificationViaClustering
Show documentation Show source 
Download classificationViaClustering.jar (1.0.3)
 

0 downloads


spring-data-batis-starter from group com.minlia.cloud.thirdparty (version 1.0.0.RELEASE)

Group: com.minlia.cloud.thirdparty Artifact: spring-data-batis-starter
Show documentation Show source 
Download spring-data-batis-starter.jar (1.0.0.RELEASE)
 

0 downloads
Artifact spring-data-batis-starter
Group com.minlia.cloud.thirdparty
Version 1.0.0.RELEASE


largeScaleKernelLearning from group nz.ac.waikato.cms.weka (version 1.0.1)

This package provides filters to enable kernel-based learning from large datasets. It currently only contains the Nystroem method.

Group: nz.ac.waikato.cms.weka Artifact: largeScaleKernelLearning
Show documentation Show source 
Download largeScaleKernelLearning.jar (1.0.1)
 

0 downloads


multiInstanceFilters from group nz.ac.waikato.cms.weka (version 1.0.8)

A collection of filters for manipulating multi-instance data. Includes PropositionalToMultiInstance, MultiInstanceToPropositional, MILESFilter and RELAGGS. For more information see: M.-A. Krogel, S. Wrobel: Facets of Aggregation Approaches to Propositionalization. In: Work-in-Progress Track at the Thirteenth International Conference on Inductive Logic Programming (ILP), 2003. Y. Chen, J. Bi, J.Z. Wang (2006). MILES: Multiple-instance learning via embedded instance selection. IEEE PAMI. 28(12):1931-1947. James Foulds, Eibe Frank: Revisiting multiple-instance learning via embedded instance selection. In: 21st Australasian Joint Conference on Artificial Intelligence, 300-310, 2008.

Group: nz.ac.waikato.cms.weka Artifact: multiInstanceFilters
Show documentation Show source 
Download multiInstanceFilters.jar (1.0.8)
 

0 downloads
Artifact multiInstanceFilters
Group nz.ac.waikato.cms.weka
Version 1.0.8


iterativeAbsoluteErrorRegression from group nz.ac.waikato.cms.weka (version 1.0.0)

Provides a regression scheme that uses Schlossmacher's iteratively reweighted least squares method to fit a model that minimizes absolute error. The scheme can be used with any base learner in WEKA that performs least-squares regression

Group: nz.ac.waikato.cms.weka Artifact: iterativeAbsoluteErrorRegression
Show documentation Show source 
Download iterativeAbsoluteErrorRegression.jar (1.0.0)
 

0 downloads




Page 16 from 19 (items total 277)


© 2015 - 2025 Weber Informatics LLC | Privacy Policy