Download all versions of paceRegression JAR files with all dependencies
paceRegression from group nz.ac.waikato.cms.weka (version 1.0.2)
Class for building pace regression linear models and using them for prediction.
Under regularity conditions, pace regression is provably optimal when the number of coefficients tends to infinity. It consists of a group of estimators that are either overall optimal or optimal under certain conditions.
The current work of the pace regression theory, and therefore also this implementation, do not handle:
- missing values
- non-binary nominal attributes
- the case that n - k is small where n is the number of instances and k is the number of coefficients (the threshold used in this implmentation is 20)
For more information see:
Wang, Y (2000). A new approach to fitting linear models in high dimensional spaces. Hamilton, New Zealand.
Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning, Sydney, Australia, 650-657, 2002.
Artifact paceRegression
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Tags: pace using handle tends implmentation 2002 regression optimal nominal where used missing more values coefficients when consists overall conference work information spaces nineteenth provably dimensional international under class number machine models conditions that them australia proceedings case estimators this small binary theory witten wang instances infinity current zealand probability regularity sydney linear building prediction learning threshold fitting therefore either implementation modeling approach hamilton attributes certain high group also 2000
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/paceRegression
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Tags: pace using handle tends implmentation 2002 regression optimal nominal where used missing more values coefficients when consists overall conference work information spaces nineteenth provably dimensional international under class number machine models conditions that them australia proceedings case estimators this small binary theory witten wang instances infinity current zealand probability regularity sydney linear building prediction learning threshold fitting therefore either implementation modeling approach hamilton attributes certain high group also 2000
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/paceRegression
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
paceRegression from group nz.ac.waikato.cms.weka (version 1.0.1)
Class for building pace regression linear models and using them for prediction.
Under regularity conditions, pace regression is provably optimal when the number of coefficients tends to infinity. It consists of a group of estimators that are either overall optimal or optimal under certain conditions.
The current work of the pace regression theory, and therefore also this implementation, do not handle:
- missing values
- non-binary nominal attributes
- the case that n - k is small where n is the number of instances and k is the number of coefficients (the threshold used in this implmentation is 20)
For more information see:
Wang, Y (2000). A new approach to fitting linear models in high dimensional spaces. Hamilton, New Zealand.
Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning, Sydney, Australia, 650-657, 2002.
Artifact paceRegression
Group nz.ac.waikato.cms.weka
Version 1.0.1
Last update 24. April 2012
Tags: pace using handle tends implmentation 2002 regression optimal nominal where used missing more values coefficients when consists overall conference work information spaces nineteenth provably dimensional international under class number machine models conditions that them australia proceedings case estimators this small binary theory witten wang instances infinity current zealand probability regularity sydney linear building prediction learning threshold fitting therefore either implementation modeling approach hamilton attributes certain high group also 2000
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/paceRegression
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.1
Last update 24. April 2012
Tags: pace using handle tends implmentation 2002 regression optimal nominal where used missing more values coefficients when consists overall conference work information spaces nineteenth provably dimensional international under class number machine models conditions that them australia proceedings case estimators this small binary theory witten wang instances infinity current zealand probability regularity sydney linear building prediction learning threshold fitting therefore either implementation modeling approach hamilton attributes certain high group also 2000
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/paceRegression
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Page 1 from 1 (items total 2)
© 2015 - 2024 Weber Informatics LLC | Privacy Policy