Download JAR files tagged by sydney with all dependencies
elastichosts-syd-v from group org.apache.jclouds.provider (version 2.6.0)
ElasticHosts implementation targeted to Sydney
Group: org.apache.jclouds.provider Artifact: elastichosts-syd-v
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact elastichosts-syd-v
Group org.apache.jclouds.provider
Version 2.6.0
Last update 03. March 2024
Organization not specified
URL Not specified
License not specified
Dependencies amount 1
Dependencies elasticstack,
There are maybe transitive dependencies!
Group org.apache.jclouds.provider
Version 2.6.0
Last update 03. March 2024
Organization not specified
URL Not specified
License not specified
Dependencies amount 1
Dependencies elasticstack,
There are maybe transitive dependencies!
elastichosts-syd-v from group com.amysta.jclouds.provider (version 2.0.1)
ElasticHosts implementation targeted to Sydney
Group: com.amysta.jclouds.provider Artifact: elastichosts-syd-v
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact elastichosts-syd-v
Group com.amysta.jclouds.provider
Version 2.0.1
Last update 27. October 2016
Organization not specified
URL Not specified
License not specified
Dependencies amount 1
Dependencies elasticstack,
There are maybe transitive dependencies!
Group com.amysta.jclouds.provider
Version 2.0.1
Last update 27. October 2016
Organization not specified
URL Not specified
License not specified
Dependencies amount 1
Dependencies elasticstack,
There are maybe transitive dependencies!
paceRegression from group nz.ac.waikato.cms.weka (version 1.0.2)
Class for building pace regression linear models and using them for prediction.
Under regularity conditions, pace regression is provably optimal when the number of coefficients tends to infinity. It consists of a group of estimators that are either overall optimal or optimal under certain conditions.
The current work of the pace regression theory, and therefore also this implementation, do not handle:
- missing values
- non-binary nominal attributes
- the case that n - k is small where n is the number of instances and k is the number of coefficients (the threshold used in this implmentation is 20)
For more information see:
Wang, Y (2000). A new approach to fitting linear models in high dimensional spaces. Hamilton, New Zealand.
Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning, Sydney, Australia, 650-657, 2002.
Group: nz.ac.waikato.cms.weka Artifact: paceRegression
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact paceRegression
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/paceRegression
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/paceRegression
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!
Page 1 from 1 (items total 3)