All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.biojava.nbio.structure.symmetry.geometry.MomentsOfInertia Maven / Gradle / Ivy

There is a newer version: 7.2.2
Show newest version
/*
 *                    BioJava development code
 *
 * This code may be freely distributed and modified under the
 * terms of the GNU Lesser General Public Licence.  This should
 * be distributed with the code.  If you do not have a copy,
 * see:
 *
 *      http://www.gnu.org/copyleft/lesser.html
 *
 * Copyright for this code is held jointly by the individual
 * authors.  These should be listed in @author doc comments.
 *
 * For more information on the BioJava project and its aims,
 * or to join the biojava-l mailing list, visit the home page
 * at:
 *
 *      http://www.biojava.org/
 *
 */

package org.biojava.nbio.structure.symmetry.geometry;

import org.biojava.nbio.structure.jama.EigenvalueDecomposition;
import org.biojava.nbio.structure.jama.Matrix;

import javax.vecmath.Point3d;
import javax.vecmath.Vector3d;
import java.util.ArrayList;
import java.util.List;

/**
 *
 * @author Peter
 */
public class MomentsOfInertia {
	private List points = new ArrayList();
	private List masses = new ArrayList();

	private boolean modified = true;

	private double[] principalMomentsOfInertia = new double[3];
	private Vector3d[] principalAxes = new Vector3d[3];

	public enum SymmetryClass {LINEAR, PROLATE, OBLATE, SYMMETRIC, ASYMMETRIC};

	/** Creates a new instance of MomentsOfInertia */
	public MomentsOfInertia() {
	}

	public void addPoint(Point3d point, double mass) {
		points.add(point);
		masses.add(mass);
		modified = true;
	}

	public Point3d centerOfMass() {
		if (points.size() == 0) {
			throw new IllegalStateException("MomentsOfInertia: no points defined");
		}

		Point3d center = new Point3d();
		double totalMass = 0.0;

		for (int i = 0, n = points.size(); i < n; i++) {
			double mass = masses.get(i);
			totalMass += mass;
			center.scaleAdd(mass, points.get(i), center);
		}
		center.scale(1.0/totalMass);
		return center;
	}

	public double[] getPrincipalMomentsOfInertia() {
		if (modified) {
			diagonalizeTensor();
			modified = false;
		}
		return principalMomentsOfInertia;
	}

	public Vector3d[] getPrincipalAxes() {
		if (modified) {
			diagonalizeTensor();
			modified = false;
		}
		return principalAxes;
	}
	// The effective value of this distance for a certain body is known as its radius of
	// gyration with respect to the given axis. The radius of gyration corresponding to Ijj
	// is defined as
	// http://www.eng.auburn.edu/~marghitu/MECH2110/C_4.pdf
	// radius of gyration k(j) = sqrt(I(j)/m)
	public double[] getElipsisRadii() {
		if (modified) {
			diagonalizeTensor();
			modified = false;
		}
		double m = 0;
		for (int i = 0, n = points.size(); i < n; i++) {
			 m += masses.get(i);
		}
		double[] r = new double[3];
		for (int i = 0; i < 3; i++) {
			r[i] = Math.sqrt(principalMomentsOfInertia[i]/m);
		}
		return r;
	}

	public double getRadiusOfGyration() {
		Point3d c = centerOfMass();
		Point3d t = new Point3d();
		double sum = 0;
		for (int i = 0, n = points.size(); i < n; i++) {
			t.set(points.get(i));
			sum += t.distanceSquared(c);
		}
		sum /= points.size();
		return Math.sqrt(sum);
	}

	public SymmetryClass getSymmetryClass(double threshold) {
		if (modified) {
			diagonalizeTensor();
			modified = false;
		}
		double ia = principalMomentsOfInertia[0];
		double ib = principalMomentsOfInertia[1];
		double ic = principalMomentsOfInertia[2];
		boolean c1 = (ib - ia) / (ib + ia) < threshold;
		boolean c2 = (ic - ib) / (ic + ib) < threshold;

		if (c1 && c2) {
			return SymmetryClass.SYMMETRIC;
		}
		if (c1) {
			return SymmetryClass.OBLATE;
		}
		if (c2) {
			return SymmetryClass.PROLATE;
		}
		return SymmetryClass.ASYMMETRIC;
	}

	public double symmetryCoefficient() {
		if (modified) {
			diagonalizeTensor();
			modified = false;
		}
		double ia = principalMomentsOfInertia[0];
		double ib = principalMomentsOfInertia[1];
		double ic = principalMomentsOfInertia[2];
		double c1 = 1.0f - (ib - ia) / (ib + ia);
		double c2 = 1.0f - (ic - ib) / (ic + ib);
		return Math.max(c1, c2);
	}

	public double getAsymmetryParameter(double threshold) {
	   if (modified) {
			diagonalizeTensor();
			modified = false;
		}
	   if (getSymmetryClass(threshold).equals(SymmetryClass.SYMMETRIC)) {
		   return 0.0;
	   }
	   double a = 1.0/principalMomentsOfInertia[0];
	   double b = 1.0/principalMomentsOfInertia[1];
	   double c = 1.0/principalMomentsOfInertia[2];
	   return (2 * b - a - c) / (a - c);
	}

	public double[][] getInertiaTensor() {
		Point3d p = new Point3d();
		double[][] tensor = new double[3][3];

		// calculate the inertia tensor at center of mass
		Point3d com = centerOfMass();

		for (int i = 0, n = points.size(); i < n; i++) {
			double mass = masses.get(i);
			p.sub(points.get(i), com);

			tensor[0][0] += mass * (p.y * p.y + p.z * p.z);
			tensor[1][1] += mass * (p.x * p.x + p.z * p.z);
			tensor[2][2] += mass * (p.x * p.x + p.y * p.y);

			tensor[0][1] -= mass * p.x * p.y;
			tensor[0][2] -= mass * p.x * p.z;
			tensor[1][2] -= mass * p.y * p.z;
		}

		tensor[1][0] = tensor[0][1];
		tensor[2][0] = tensor[0][2];
		tensor[2][1] = tensor[1][2];

		return tensor;
	}

	private void diagonalizeTensor() {
		Matrix m = new Matrix(getInertiaTensor());
		EigenvalueDecomposition eig = m.eig();

		principalMomentsOfInertia = eig.getRealEigenvalues();
		double[][] eigenVectors = eig.getV().getArray();
		principalAxes[0] = new Vector3d(eigenVectors[0][0], eigenVectors[1][0],eigenVectors[2][0]);
		principalAxes[1] = new Vector3d(eigenVectors[0][1], eigenVectors[1][1],eigenVectors[2][1]);
		principalAxes[2] = new Vector3d(eigenVectors[0][2], eigenVectors[1][2],eigenVectors[2][2]);
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy