All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.biojava.nbio.structure.symmetry.geometry.SuperPositionQCP Maven / Gradle / Ivy

There is a newer version: 7.2.2
Show newest version
/*
 *                    BioJava development code
 *
 * This code may be freely distributed and modified under the
 * terms of the GNU Lesser General Public Licence.  This should
 * be distributed with the code.  If you do not have a copy,
 * see:
 *
 *      http://www.gnu.org/copyleft/lesser.html
 *
 * Copyright for this code is held jointly by the individual
 * authors.  These should be listed in @author doc comments.
 *
 * For more information on the BioJava project and its aims,
 * or to join the biojava-l mailing list, visit the home page
 * at:
 *
 *      http://www.biojava.org/
 *
 */

package org.biojava.nbio.structure.symmetry.geometry;

import javax.vecmath.Matrix3d;
import javax.vecmath.Matrix4d;
import javax.vecmath.Point3d;
import javax.vecmath.Vector3d;


/**
 *
 * @author Peter
 */
public final class SuperPositionQCP {
	double evecprec = 1d-6;
	double evalprec = 1d-11;

	private Point3d[] x = null;
	private Point3d[] y = null;

	private double[] weight = null;

	private Point3d[] xref = null;
	private Point3d[] yref = null;
	private Point3d xtrans;
	private Point3d ytrans;

	private double e0;
	private Matrix3d rotmat = new Matrix3d();
	private Matrix4d transformation = new Matrix4d();
	private double rmsd = 0;
	private double Sxy, Sxz, Syx, Syz, Szx, Szy;
	private double SxxpSyy, Szz, mxEigenV, SyzmSzy,SxzmSzx, SxymSyx;
	private double SxxmSyy, SxypSyx, SxzpSzx;
	private double Syy, Sxx, SyzpSzy;
	private boolean rmsdCalculated = false;
	private boolean transformationCalculated = false;
	private boolean centered = false;


	public void set(Point3d[] x, Point3d[] y) {
		this.x = x;
		this.y = y;
		rmsdCalculated = false;
		transformationCalculated = false;
	}

	public void set(Point3d[] x, Point3d[] y, double[] weight) {
		this.x = x;
		this.y = y;
		this.weight = weight;
		rmsdCalculated = false;
		transformationCalculated = false;
	}

	public void setCentered(boolean centered) {
		this.centered = centered;
	}

	public double getRmsd() {
		if (! rmsdCalculated) {
			calcRmsd(x, y);
		}
		return rmsd;
	}

	public Matrix4d getTransformationMatrix() {
		getRotationMatrix();
		if (! centered) {
			calcTransformation();
		} else {
			transformation.set(rotmat);
		}
		return transformation;
	}

	public Matrix3d getRotationMatrix() {
		getRmsd();
		if (! transformationCalculated) {
			calcRotationMatrix();
		}
		return rotmat;
	}

	public Point3d[] getTransformedCoordinates() {
		SuperPosition.transform(transformation, x);
		return x;
	}

	/**
	 * this requires the coordinates to be precentered
	 * @param x
	 * @param y
	 */
	private void calcRmsd(Point3d[] x, Point3d[] y) {
		if (centered) {
			innerProduct(y, x);
		} else {
			// translate to origin
			xref = SuperPosition.clonePoint3dArray(x);
			xtrans = SuperPosition.centroid(xref);
			//  	System.out.println("x centroid: " + xtrans);
			xtrans.negate();
			SuperPosition.translate(xtrans, xref);

			yref = SuperPosition.clonePoint3dArray(y);
			ytrans = SuperPosition.centroid(yref);
			// 	System.out.println("y centroid: " + ytrans);
			ytrans.negate();
			SuperPosition.translate(ytrans, yref);
			innerProduct(yref, xref);
		}
		calcRmsd(x.length);
	}

	/* Superposition coords2 onto coords1 -- in other words, coords2 is rotated, coords1 is held fixed */
	private void calcTransformation() {
//		transformation.set(rotmat,new Vector3d(0,0,0), 1);
		transformation.set(rotmat);
//		long t2 = System.nanoTime();
//		System.out.println("create transformation: " + (t2-t1));
//		System.out.println("m3d -> m4d");
//		System.out.println(transformation);

		// combine with x -> origin translation
		Matrix4d trans = new Matrix4d();
		trans.setIdentity();
		trans.setTranslation(new Vector3d(xtrans));
		transformation.mul(transformation, trans);
//		System.out.println("setting xtrans");
//		System.out.println(transformation);
//
//		// combine with origin -> y translation
		ytrans.negate();
		Matrix4d transInverse = new Matrix4d();
		transInverse.setIdentity();
		transInverse.setTranslation(new Vector3d(ytrans));
		transformation.mul(transInverse, transformation);
//		System.out.println("setting ytrans");
//		System.out.println(transformation);
	}

	/**
	 * http://theobald.brandeis.edu/qcp/qcprot.c
	 * @param A
	 * @param coords1
	 * @param coords2
	 * @return
	 */
	private void innerProduct(Point3d[] coords1, Point3d[] coords2) {
		double          x1, x2, y1, y2, z1, z2;
		double          g1 = 0.0, g2 = 0.0;

		Sxx = 0;
		Sxy = 0;
		Sxz = 0;
		Syx = 0;
		Syy = 0;
		Syz = 0;
		Szx = 0;
		Szy = 0;
		Szz = 0;

		if (weight != null)
		{
			for (int i = 0; i < coords1.length; i++)
			{
				x1 = weight[i] * coords1[i].x;
				y1 = weight[i] * coords1[i].y;
				z1 = weight[i] * coords1[i].z;

				g1 += x1 * coords1[i].x + y1 * coords1[i].y + z1 * coords1[i].z;

				x2 = coords2[i].x;
				y2 = coords2[i].y;
				z2 = coords2[i].z;

				g2 += weight[i] * (x2 * x2 + y2 * y2 + z2 * z2);

				Sxx +=  (x1 * x2);
				Sxy +=  (x1 * y2);
				Sxz +=  (x1 * z2);

				Syx +=  (y1 * x2);
				Syy +=  (y1 * y2);
				Syz +=  (y1 * z2);

				Szx +=  (z1 * x2);
				Szy +=  (z1 * y2);
				Szz +=  (z1 * z2);
			}
		}
		else
		{
			for (int i = 0; i < coords1.length; i++)
			{
				g1 += coords1[i].x * coords1[i].x + coords1[i].y * coords1[i].y + coords1[i].z * coords1[i].z;
				g2 += coords2[i].x * coords2[i].x + coords2[i].y * coords2[i].y + coords2[i].z * coords2[i].z;

				Sxx +=  coords1[i].x * coords2[i].x;
				Sxy +=  coords1[i].x * coords2[i].y;
				Sxz +=  coords1[i].x * coords2[i].z;

				Syx +=  coords1[i].y * coords2[i].x;
				Syy +=  coords1[i].y * coords2[i].y;
				Syz +=  coords1[i].y * coords2[i].z;

				Szx +=  coords1[i].z * coords2[i].x;
				Szy +=  coords1[i].z * coords2[i].y;
				Szz +=  coords1[i].z * coords2[i].z;
			}
		}

		e0 = (g1 + g2) * 0.5;
	}

	private int calcRmsd(int len)
	{
		double Sxx2 = Sxx * Sxx;
		double Syy2 = Syy * Syy;
		double Szz2 = Szz * Szz;

		double Sxy2 = Sxy * Sxy;
		double Syz2 = Syz * Syz;
		double Sxz2 = Sxz * Sxz;

		double Syx2 = Syx * Syx;
		double Szy2 = Szy * Szy;
		double Szx2 = Szx * Szx;

		double SyzSzymSyySzz2 = 2.0*(Syz*Szy - Syy*Szz);
		double Sxx2Syy2Szz2Syz2Szy2 = Syy2 + Szz2 - Sxx2 + Syz2 + Szy2;

		double c2 = -2.0 * (Sxx2 + Syy2 + Szz2 + Sxy2 + Syx2 + Sxz2 + Szx2 + Syz2 + Szy2);
		double c1 = 8.0 * (Sxx*Syz*Szy + Syy*Szx*Sxz + Szz*Sxy*Syx - Sxx*Syy*Szz - Syz*Szx*Sxy - Szy*Syx*Sxz);

		SxzpSzx = Sxz + Szx;
		SyzpSzy = Syz + Szy;
		SxypSyx = Sxy + Syx;
		SyzmSzy = Syz - Szy;
		SxzmSzx = Sxz - Szx;
		SxymSyx = Sxy - Syx;
		SxxpSyy = Sxx + Syy;
		SxxmSyy = Sxx - Syy;

		double Sxy2Sxz2Syx2Szx2 = Sxy2 + Sxz2 - Syx2 - Szx2;

		double c0 = Sxy2Sxz2Syx2Szx2 * Sxy2Sxz2Syx2Szx2
				+ (Sxx2Syy2Szz2Syz2Szy2 + SyzSzymSyySzz2) * (Sxx2Syy2Szz2Syz2Szy2 - SyzSzymSyySzz2)
				+ (-(SxzpSzx)*(SyzmSzy)+(SxymSyx)*(SxxmSyy-Szz)) * (-(SxzmSzx)*(SyzpSzy)+(SxymSyx)*(SxxmSyy+Szz))
				+ (-(SxzpSzx)*(SyzpSzy)-(SxypSyx)*(SxxpSyy-Szz)) * (-(SxzmSzx)*(SyzmSzy)-(SxypSyx)*(SxxpSyy+Szz))
				+ (+(SxypSyx)*(SyzpSzy)+(SxzpSzx)*(SxxmSyy+Szz)) * (-(SxymSyx)*(SyzmSzy)+(SxzpSzx)*(SxxpSyy+Szz))
				+ (+(SxypSyx)*(SyzmSzy)+(SxzmSzx)*(SxxmSyy-Szz)) * (-(SxymSyx)*(SyzpSzy)+(SxzmSzx)*(SxxpSyy-Szz));

		mxEigenV = e0;

		int i;
		for (i = 0; i < 50; ++i)
		{
			double oldg = mxEigenV;
			double x2 = mxEigenV*mxEigenV;
			double b = (x2 + c2)*mxEigenV;
			double a = b + c1;
			double delta = ((a*mxEigenV + c0)/(2.0*x2*mxEigenV + b + a));
			mxEigenV -= delta;

			if (Math.abs(mxEigenV - oldg) < Math.abs(evalprec*mxEigenV))
				break;
		}


		if (i == 50)
			System.err.println("More than %d iterations needed!" + i);

		/* the fabs() is to guard against extremely small, but *negative* numbers due to floating point error */
		rmsd = Math.sqrt(Math.abs(2.0 * (e0 - mxEigenV)/len));

		return 1;
	}

	private int calcRotationMatrix() {
		double a11 = SxxpSyy + Szz-mxEigenV;
		double a12 = SyzmSzy;
		double a13 = - SxzmSzx;
		double a14 = SxymSyx;
		double a21 = SyzmSzy;
		double a22 = SxxmSyy - Szz-mxEigenV;
		double a23 = SxypSyx;
		double a24= SxzpSzx;
		double a31 = a13;
		double a32 = a23;
		double a33 = Syy-Sxx-Szz - mxEigenV;
		double a34 = SyzpSzy;
		double a41 = a14;
		double a42 = a24;
		double a43 = a34;
		double a44 = Szz - SxxpSyy - mxEigenV;
		double a3344_4334 = a33 * a44 - a43 * a34;
		double a3244_4234 = a32 * a44-a42*a34;
		double a3243_4233 = a32 * a43 - a42 * a33;
		double a3143_4133 = a31 * a43-a41*a33;
		double a3144_4134 = a31 * a44 - a41 * a34;
		double a3142_4132 = a31 * a42-a41*a32;
		double q1 =  a22*a3344_4334-a23*a3244_4234+a24*a3243_4233;
		double q2 = -a21*a3344_4334+a23*a3144_4134-a24*a3143_4133;
		double q3 =  a21*a3244_4234-a22*a3144_4134+a24*a3142_4132;
		double q4 = -a21*a3243_4233+a22*a3143_4133-a23*a3142_4132;

		double qsqr = q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4;

		/* The following code tries to calculate another column in the adjoint matrix when the norm of the
		 * current column is too small.
		 * Usually this commented block will never be activated.  To be absolutely safe this should be
		 * uncommented, but it is most likely unnecessary.
		 */
		if (qsqr < evecprec)
		{
			q1 =  a12*a3344_4334 - a13*a3244_4234 + a14*a3243_4233;
			q2 = -a11*a3344_4334 + a13*a3144_4134 - a14*a3143_4133;
			q3 =  a11*a3244_4234 - a12*a3144_4134 + a14*a3142_4132;
			q4 = -a11*a3243_4233 + a12*a3143_4133 - a13*a3142_4132;
			qsqr = q1*q1 + q2 *q2 + q3*q3+q4*q4;

			if (qsqr < evecprec)
			{
				double a1324_1423 = a13 * a24 - a14 * a23, a1224_1422 = a12 * a24 - a14 * a22;
				double a1223_1322 = a12 * a23 - a13 * a22, a1124_1421 = a11 * a24 - a14 * a21;
				double a1123_1321 = a11 * a23 - a13 * a21, a1122_1221 = a11 * a22 - a12 * a21;

				q1 =  a42 * a1324_1423 - a43 * a1224_1422 + a44 * a1223_1322;
				q2 = -a41 * a1324_1423 + a43 * a1124_1421 - a44 * a1123_1321;
				q3 =  a41 * a1224_1422 - a42 * a1124_1421 + a44 * a1122_1221;
				q4 = -a41 * a1223_1322 + a42 * a1123_1321 - a43 * a1122_1221;
				qsqr = q1*q1 + q2 *q2 + q3*q3+q4*q4;

				if (qsqr < evecprec)
				{
					q1 =  a32 * a1324_1423 - a33 * a1224_1422 + a34 * a1223_1322;
					q2 = -a31 * a1324_1423 + a33 * a1124_1421 - a34 * a1123_1321;
					q3 =  a31 * a1224_1422 - a32 * a1124_1421 + a34 * a1122_1221;
					q4 = -a31 * a1223_1322 + a32 * a1123_1321 - a33 * a1122_1221;
					qsqr = q1*q1 + q2 *q2 + q3*q3 + q4*q4;

					if (qsqr < evecprec)
					{
						/* if qsqr is still too small, return the identity matrix. */
						rotmat.setIdentity();

						return 0;
					}
				}
			}
		}

		double normq = Math.sqrt(qsqr);
		q1 /= normq;
		q2 /= normq;
		q3 /= normq;
		q4 /= normq;

		System.out.println("q: " + q1 + " " + q2 + " " + q3 + " " + q4);

		double a2 = q1 * q1;
		double x2 = q2 * q2;
		double y2 = q3 * q3;
		double z2 = q4 * q4;

		double xy = q2 * q3;
		double az = q1 * q4;
		double zx = q4 * q2;
		double ay = q1 * q3;
		double yz = q3 * q4;
		double ax = q1 * q2;

		rotmat.m00 = a2 + x2 - y2 - z2;
		rotmat.m01 = 2 * (xy + az);
		rotmat.m02 = 2 * (zx - ay);

		rotmat.m10 = 2 * (xy - az);
		rotmat.m11 = a2 - x2 + y2 - z2;
		rotmat.m12 = 2 * (yz + ax);

		rotmat.m20 = 2 * (zx + ay);
		rotmat.m21 = 2 * (yz - ax);
		rotmat.m22 = a2 - x2 - y2 + z2;

		return 1;
	}

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy