
org.campagnelab.dl.somatic.learning.TrainModelS Maven / Gradle / Ivy
package org.campagnelab.dl.somatic.learning;
import org.campagnelab.dl.framework.domains.DomainDescriptor;
import org.campagnelab.dl.framework.tools.TrainModel;
import org.campagnelab.dl.framework.tools.TrainingArguments;
import org.campagnelab.dl.somatic.learning.domains.SomaticMutationDomainDescriptor;
import org.campagnelab.dl.varanalysis.protobuf.BaseInformationRecords;
import org.campagnelab.goby.baseinfo.SequenceBaseInformationReader;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
import java.util.Properties;
/**
* Train Somatic implemented with the Generic TrainModel
*/
public class TrainModelS extends TrainModel {
static private Logger LOG = LoggerFactory.getLogger(TrainModelS.class);
public static void main(String[] args) {
TrainModelS tool = new TrainModelS();
tool.parseArguments(args, "TrainModelS", tool.createArguments());
if (tool.args().trainingSets.size() == 0) {
System.out.println("Please add exactly one training set to the args().");
return;
}
assert !tool.args().errorEnrichment : "This tool does not support error enrichment";
tool.execute();
tool.writeModelingConditions(tool.getRecordingArguments());
}
@Override
public TrainingArguments createArguments() {
return new SomaticTrainingArguments();
}
@Override
protected DomainDescriptor domainDescriptor() {
return new SomaticMutationDomainDescriptor((SomaticTrainingArguments) args());
}
@Override
public Properties getReaderProperties(String trainingSet) throws IOException {
SequenceBaseInformationReader reader = new SequenceBaseInformationReader(trainingSet);
final Properties properties = reader.getProperties();
reader.close();
return properties;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy