org.clulab.demo.bio.documents.PMID-15735718.txt Maven / Gradle / Ivy
The newest version!
Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities.
DNA damage often activates the p53-p21 pathway and causes G(1)-phase arrest in mammalian cells. Although there is ample evidence that p21 induction by p53 leads to Cdk2 inhibition, it is unclear whether this checkpoint event also leads to Cdk4 inhibition. Diaminocyclohexane(trans-diacetato)(dichloro) platinum(IV) (DAP), a platinum-based coordination complex, is a DNA-damaging agent that is effective against a variety of tumor cells resistant to the parental drug cisplatin. Our previous studies established that treatment of human cancer cells with low effective concentrations of DAP specifically activates the G(1)-phase checkpoint and simultaneously inhibit Cdk4 and Cdk2 activities. Here we demonstrate that DAP treatment of human cancer cells activates the p53-p21 pathway without activating other known mechanisms that inhibit Cdk4 and Cdk2 activities. The induced p21 binds to both the Cdk4/cyclin D and Cdk2/cyclin E complexes and inhibits both of their kinase activities. Conversely, inhibition of p21 induction by cycloheximide or by p21 gene deletion prevents DAP-induced inhibition of Cdk4 and Cdk2 activities. Attenuated p53 expression and p21 induction also eliminates DAP-induced G(1)-phase arrest and inhibition of Cdk4 and Cdk2 activities. Together, these findings establish that activation of the p53-p21 pathway is responsible for the DAP-induced G(1)-phase checkpoint response and provide the first solid evidence that p21 induction by p53 during a DNA damage-induced G(1)-phase checkpoint response inhibits both Cdk4 and Cdk2 activities.
© 2015 - 2025 Weber Informatics LLC | Privacy Policy