All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.geotoolkit.nature.SeaWater Maven / Gradle / Ivy

/*
 *    Geotoolkit.org - An Open Source Java GIS Toolkit
 *    http://www.geotoolkit.org
 *
 *    (C) 1999-2012, Open Source Geospatial Foundation (OSGeo)
 *    (C) 2009-2012, Geomatys
 *
 *    This library is free software; you can redistribute it and/or
 *    modify it under the terms of the GNU Lesser General Public
 *    License as published by the Free Software Foundation;
 *    version 2.1 of the License.
 *
 *    This library is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *    Lesser General Public License for more details.
 *
 *    NOTE: permission has been given to the JScience project (http://www.jscience.org)
 *          to distribute this file under BSD-like license.
 */
package org.geotoolkit.nature;

import static java.lang.Math.*;


/**
 * Sea water properties as a function of salinity, temperature and pressure.
 * Density is computed using the 1980 definition of Equation of State (EOS80).
 * Units are:
 * 

*

    *
  • Salinity: Pratical Salinity Scale 1978 (PSS-78).
  • *
  • Temperature: Celsius degrees according International Temperature Scale 1968 (ITS-68).
  • *
  • Pressure: decibars (1 dbar = 10 kPa). *
* * @author Bernard Pelchat (MPO) * @author Martin Desruisseaux (MPO, IRD) * @version 3.00 * * @since 1.0 * @module */ public final class SeaWater { /* * Note: Les algorithmes originaux de l'UNESCO recevaient en entrés * des pressions en décibars. Les algorithmes écrites par * Bernard Pelchat recevaient en entrés des pressions en * MegaPascal. La première ligne de code des algorithmes * de Bernard Pelchat multipliait donc les pressions par * 100, afin de les convertir en decibars. */ /** * Conductivity (in mS/cm) of a standard sea water sample. * S is for Siemens (or Mho, its the same...). */ public static final double STANDARD_CONDUCTIVITY = 42.914; /** * Coéfficients de l'équation d'état EOS-80. La densité * calculée par ces coéfficients est la densité Sigma-T. */ private static final double EOS80_A[] = {-28.263737, 6.793952E-2, -9.095290E-3, 1.001685E-4, -1.120083E-6, 6.536332E-9}, EOS80_B[] = { 8.24493E-1, -4.0899E-3, 7.6438E-5, -8.2467E-7, 5.3875E-9}, EOS80_C[] = { -5.72466E-3, 1.0227E-4, -1.6546E-6}, EOS80_D = 4.8314E-4, EOS80_E[] = {-1930.06, 148.4206, -2.327105, 1.360477E-2, -5.155288E-5}, EOS80_F[] = { 54.6746, -6.03459E-1, 1.09987E-2, -6.1670E-5}, EOS80_G[] = { 7.944E-2, 1.6483E-2, -5.3009E-4}, EOS80_H[] = { -1.194975E-1, 1.43713E-3, 1.16092E-4, -5.77905E-7}, EOS80_I[] = { 2.2838E-3, -1.0981E-5, -1.6078E-6}, EOS80_J = 1.91075E-4, EOS80_K[] = { 3.47718E-5, -6.12293E-6, 5.2787E-8}, EOS80_M[] = { -9.9348E-7, 2.0816E-8, 9.1697E-10}, EOS80_N[] = {21582.27, 3.359406, 5.03217E-5}, RHO_35_0_0 = 1028.1063, DR_35_0_0 = 28.106331; /** * Coéfficients de l'équation d'état EOS-80. La densité * calculée par ces coéfficients est la densité "vrai". */ private static final double EOS80_At[] = {999.842594, 6.793952E-2, -9.095290E-3, 1.001685E-4, -1.120083E-6, 6.536332E-9}, EOS80_Et[] = {19652.21, 148.4206, -2.327105, 1.360477E-2, -5.155288E-5}, EOS80_Ht[] = { 3.239908, 1.43713E-3, 1.16092E-4, -5.77905E-7}, EOS80_Kt[] = { 8.50935E-5, -6.12293E-6, 5.2787E-8}; /** * Coéfficients de l'équation de la salinité PSS-78. */ private static final double PSS78_A[] = { 0.0080, -0.1692, 25.3851, 14.0941, -7.0261, 2.7081}, PSS78_B[] = { 0.0005, -0.0056, -0.0066, -0.0375, 0.0636, -0.0144}, PSS78_C[] = { 0.6766097, 2.00564E-2, 1.104259E-4, -6.9698E-7, 1.0031E-9}, PSS78_D[] = { 3.426E-2, 4.464E-4, 4.215E-1, -3.107E-3}, PSS78_E[] = { 2.070E-5, -6.370E-10, 3.989E-15}, PSS78_G[] = {-0.1692, 50.7702, 42.2823, -28.1044, 13.5405}, PSS78_H[] = {-0.0056, -0.0132, -0.1125, 0.2544, -0.0720}, PSS78_K = 0.0162; /** * Coéfficients pour les salinités élevées, */ private static final double[] PSS78_AR = { 7.737, -9.819, 8.663, -2.625}, PSS78_AT = { 3.473E-2, 3.188E-3, -4.655E-5}, PSS78_CR = {-10.01E-2, 4.82E-2, -6.682E-4}; /** * Constantes nécessaires au calcul de la chaleur spécifique. * * @see #specificHeat */ private static final double HEAT_AA[] = {-7.643575, 0.1072763, -1.38385E-3}, HEAT_BB[] = { 0.1770383, -4.07718E-3, 5.148E-5}, HEAT_CC[] = { 4217.4, -3.720283, 0.1412855, -2.654387E-3, 2.093236E-5}, HEAT_A[] = {-4.9592E-1, 1.45747E-2, -3.13885E-4, 2.0357E-6, 1.7168E-8}, HEAT_B[] = { 2.4931E-4, -1.08645E-5, 2.87533E-7, -4.0027E-9, 2.2956E-11}, HEAT_C[] = {-5.422E-8, 2.6380E-9, -6.5637E-11, 6.136E-13}, HEAT_D[] = { 4.9247E-3, -1.28315E-4, 9.802E-7, 2.5941E-8, -2.9179E-10}, HEAT_E[] = {-1.2331E-4, -1.517E-6, 3.122E-8}, HEAT_F[] = {-2.9558E-6, 1.17054E-7, -2.3905E-9, 1.8448E-11}, HEAT_G = 9.971E-8, HEAT_H[] = { 5.540E-10, -1.7682E-11, 3.513E-13}, HEAT_J = -1.4300E-12; /** * Constantes nécessaires au calcul de la température adiabétique. * * @see #adiabeticTemperatureGradient */ private static final double GRAD_A[] = { 3.5803E-05, 8.5258E-06, -6.8360E-08, 6.6228E-10}, GRAD_B[] = { 1.8932E-06, -4.2393E-08}, GRAD_C[] = { 1.8741E-08, -6.7795E-10, 8.7330E-12, -5.4481E-14}, GRAD_D[] = {-1.1351E-10, 2.7759E-12}, GRAD_E[] = {-4.6206E-13, 1.8676E-14, -2.1687E-16}; /** * Constantes nécessaires au calcul de la profondeur. * * @see #depth */ private static final double DEPTH_C[] = {9.72659, -2.2512E-5, 2.279E-10, -1.82E-15}; /** * Constantes nécessaires au calcul de la vitesse du son. * * @see #soundVelocity */ private static final double SOUND_A0[] = { 1.389, -1.262E-2, 7.164E-5, 2.006E-6, -3.21E-8}, SOUND_A1[] = { 9.4742E-5, -1.2580E-5, -6.4885E-8, 1.0507E-8, -2.0122E-10}, SOUND_A2[] = {-3.9064E-7, 9.1041E-9, -1.6002E-10, 7.988E-12}, SOUND_A3[] = { 1.100E-10, 6.649E-12, -3.389E-13}, SOUND_B0[] = {-1.922E-2, -4.42E-5}, SOUND_B1[] = { 7.3637E-5, 1.7945E-7}, SOUND_C0[] = {1402.388, 5.03711, -5.80852E-2, 3.3420E-4, -1.47800E-6, 3.1464E-9}, SOUND_C1[] = {0.153563, 6.8982E-4, -8.1788E-6, 1.3621E-7, -6.1185E-10}, SOUND_C2[] = {3.1260E-5, -1.7107E-6, 2.5974E-8, -2.5335E-10, 1.0405E-12}, SOUND_C3[] = {-9.7729E-9, 3.8504E-10, -2.3643E-12 }, SOUND_D0 = 1.727E-3, SOUND_D1 = -7.9836E-6; /** * Constantes nécessaires au calcul de la saturation en oxygène dissous. * * @see #saturationO2 */ private static final double O2_AT[] = {-135.29996, 1.572288E+5, -6.637149E+7, 1.243678E+10, -8.621061E+11}, O2_AS[] = {0.020573, -12.142, 2363,1}; /** * Do not allow instantiation of this class. */ private SeaWater(){ } /** * Computes density as a function of salinity, temperature and pressure. * * @param S Salinity PSS-78 (0 to 42) * @param T Temperature ITS-68 (-2 to 40°C) * @param P Pressure in decibars (0 to 105 dbar), not including atmospheric pressure. * @return Density (kg/m³). */ public static double density(final double S, final double T, double P) { P /= 10.0; // Pure water density at atmospheric pressure final double RHO_0_T_0 = poly(T,EOS80_At); // Sea water density at atmospheric pressure final double SR = sqrt(S); final double RHO_S_T_0 = (EOS80_D*S + poly(T,EOS80_C)*SR + poly(T,EOS80_B))*S + RHO_0_T_0; // Compression terms final double K_S_T_0 = (poly(T,EOS80_F) + poly(T,EOS80_G)*SR)*S + poly(T,EOS80_Et); final double K_S_T_P = K_S_T_0 + ((EOS80_J*SR + poly(T,EOS80_I)) * S + poly(T,EOS80_Ht) + (poly(T,EOS80_Kt) + poly(T,EOS80_M) * S) * P) * P; return RHO_S_T_0/( 1.0 - P/K_S_T_P ); } /** * Computes density sigma-T as a function of salinity, temperature and pressure. * Density Sigma-T is equivalent to the true density minus 1000 kg/m³, and * has typical values around 35. This computation avoid some rouding errors * occuring in the true density computation. * * @param S Salinity PSS-78 (0 to 42) * @param T Temperature ITS-68 (-2 to 40°C) * @param P Pressure in decibars (0 to 105 dbar), not including atmospheric pressure. * @return Density Sigma-T (kg/m³). */ public static double densitySigmaT(final double S, final double T, double P) { P /= 10.0; // Sea water density at atmospheric pressure final double SR = sqrt(S); final double RHO = (EOS80_D*S + poly(T,EOS80_C)*SR + poly(T,EOS80_B))*S + poly(T,EOS80_A); // Specific volume at atmospheric pressure final double V_35_0_0 = 1.0/RHO_35_0_0; final double SVAN_S_T_0 = -RHO*V_35_0_0/(RHO+RHO_35_0_0); if (P <= 0) { return RHO + DR_35_0_0; } // Compression terms, DK = K(S,T,P) - K(35,0,P) final double K0 = (poly(T,EOS80_F) + poly(T,EOS80_G)*SR)*S + poly(T,EOS80_E); final double DK = K0 + (((EOS80_J * SR + poly(T,EOS80_I)) * S + poly(T,EOS80_H)) + (poly(T,EOS80_K) + poly(T,EOS80_M) * S) * P) * P; final double K_35_0_P = poly(P,EOS80_N); final double V_S_T_0 = SVAN_S_T_0 + V_35_0_0; final double SVANS = SVAN_S_T_0 * (1.0 - P/K_35_0_P) + V_S_T_0 * P * DK / (K_35_0_P * (K_35_0_P + DK)); // Compute density anomaly final double V_35_0_P = V_35_0_0*( 1.0 - P/K_35_0_P ); final double DR_35_0_P = P/(K_35_0_P*V_35_0_P); final double DVAN = SVANS/( V_35_0_P*( V_35_0_P + SVANS ) ); return DR_35_0_0 + DR_35_0_P - DVAN; } /** * Computes volume as a function of salinity, temperature and pressure. * This quantity if the inverse of density. This method is equivalent * to 1/{@link #density density}(S,T,P). * * @param S Salinity PSS-78 (0 to 42) * @param T Temperature ITS-68 (-2 to 40°C) * @param P Pressure in decibars (0 to 105 dbar), not including atmospheric pressure. * @return Volume (m³/kg). */ public static double volume(final double S, final double T, double P) { P /= 10.0; // Sea water density at atmospheric pressure final double SR = sqrt(S); final double RHO = (EOS80_D*S + poly(T,EOS80_C)*SR + poly(T,EOS80_B))*S + poly(T,EOS80_A); // Specific volume at atmospheric pressure final double V_35_0_0 = 1.0/RHO_35_0_0; final double SVAN_S_T_0 = -RHO*V_35_0_0/(RHO+RHO_35_0_0); if (P <= 0) { return SVAN_S_T_0 + V_35_0_0; } // Compression terms, DK = K(S,T,P) - K(35,0,P) final double K0 = (poly(T,EOS80_F) + poly(T,EOS80_G) * SR) * S + poly(T,EOS80_E); final double DK = K0 + (((EOS80_J * SR + poly(T,EOS80_I)) * S + poly(T,EOS80_H)) + (poly(T,EOS80_K) + poly(T,EOS80_M) * S) * P) * P; final double K_35_0_P = poly(P,EOS80_N); final double V_S_T_0 = SVAN_S_T_0 + V_35_0_0; return (SVAN_S_T_0 + V_35_0_0) * (1.0 - P/K_35_0_P) + V_S_T_0 * P * DK / (K_35_0_P * (K_35_0_P + DK)); } /** * Computes volumic anomaly as a function of salinity, temperature and pressure. * Volumic anomaly is defined as the sea water sample's volume minus a standard * sample's volume, where the standard sample is a sample of salinity 35, temperature * 0°C and the same pressure. In pseudo-code, {@code volumeAnomaly} is equivalent * to {@link #volume volume}(S,T,P)-{@link #volume volume}(35,0,P). * * @param S Salinity PSS-78 (0 to 42) * @param T Temperature ITS-68 (-2 to 40°C) * @param P Pressure in decibars (0 to 105 dbar), not including atmospheric pressure. * @return Volumic anomaly (m³/kg). */ public static double volumeAnomaly(final double S, final double T, double P) { P /= 10.0; // Sea water density at atmospheric pressure final double SR = sqrt(S); final double RHO = (EOS80_D*S + poly(T,EOS80_C)*SR + poly(T,EOS80_B))*S + poly(T,EOS80_A); // Specific volume at atmospheric pressure final double V_35_0_0 = 1.0/RHO_35_0_0; final double SVAN_S_T_0 = -RHO*V_35_0_0/(RHO+RHO_35_0_0); if (P <= 0) { return SVAN_S_T_0; } // Compression terms, DK = K(S,T,P) - K(35,0,P) final double K0 = (poly(T,EOS80_F) + poly(T,EOS80_G)*SR)*S + poly(T,EOS80_E); final double DK = K0 + (((EOS80_J * SR + poly(T,EOS80_I)) * S + poly(T,EOS80_H)) + (poly(T,EOS80_K) + poly(T,EOS80_M) * S) * P) * P; final double K_35_0_P = poly(P,EOS80_N); final double V_S_T_0 = SVAN_S_T_0 + V_35_0_0; return (SVAN_S_T_0*(1.0 - P/K_35_0_P) + V_S_T_0 * P * DK / (K_35_0_P * (K_35_0_P + DK))); } /** * Practical salinity scale 1978 definition * with temperature correction, XR = SQRT( Rt ) */ private static double sal(double RT, double XT) { return poly(RT,PSS78_A) + (XT/(1.0+PSS78_K*XT)) * poly(RT,PSS78_B); } /** * {@code dsal(RT,XT)} function for derivative * of {@code sal(RT,XT)} with RT. */ private static double dsal(double RT, double XT) { return poly(RT,PSS78_G) + (XT/(1.0+PSS78_K*XT)) * poly(RT,PSS78_H); } /** * Computes salinity as a function of conductivity, temperature and pressure. * * @param C Conductivity in mS/cm (millisiemens by centimeters). Multiply * par {@link #STANDARD_CONDUCTIVITY} if {@code C} is not a * real conductivity, but instead the ratio between the sample's * conductivity and the standard sample's conductivity. * @param T Temperature ITS-68 (-2 to 40°C). * @param P Pressure in decibars (0 to 105 dbar), not including atmospheric pressure. * @return Salinity PSS-78. * * @todo What to do with pression!?! Check the equation of state. */ public static double salinity(double C, final double T, final double P) { C /= STANDARD_CONDUCTIVITY; if (!(C < 5E-4)) { // use '!' in order to accept NaN final double XR = sqrt(C/(poly(T,PSS78_C) * (1.0 + poly(P,PSS78_E) * P / ((PSS78_D[1] * T+PSS78_D[0]) * T + 1.0 + (PSS78_D[3] * T + PSS78_D[2]) * C)))); final double S = sal(XR, T-15.0); // Do not use an 'assert' statement invoking 'cond'. if (!(S>=42)) return S; // use '!' to accept NaN /* * Calcule la salinité pour une eau de conductivité, * de température et de pression données. Cet algorithme * doit être utilisé lorsque l'on s'attend à une salinité * entre 42 et 50. */ return 35 * C + C * (C-1) * (poly(C,PSS78_AR) + T * (poly(T,PSS78_AT) + C * (PSS78_CR[0] + PSS78_CR[1] * C + PSS78_CR[2] * T))); // TODO: VERIFIER CE QUE DEVIENT LA PRESSION ET IMPLEMENTER L'EQUATION D'ETAT. } else { return 0; // Zero conductivity trap } } /** * Computes conductivity as a function of salinity, temperature and pressure. * * @param S Salinity PSS-78 (0 to 42) * @param T Temperature ITS-68 (-2 to 40°C) * @param P Pressure (0 to 105 dbar), not including atmospheric pressure. * @return Conductivity in mS/cm. */ public static double conductivity(final double S, final double T, final double P) { if (!(S < 0.02)) { // use '!' in order to accept NaN double XT = T-15.0; double RT = sqrt(S / 35.0); // First approximation double SI = sal(RT,XT); for (int n=0; n<10; n++) { // Iteration loop begin here with a maximum of 10 cycles RT += (S-SI)/dsal(RT,XT); SI = sal(RT,XT); if (abs(SI-S) < 1E-4) { break; } } double RTT = poly(T,PSS78_C)*(RT*RT); double AT = PSS78_D[3]*T + PSS78_D[2]; double BT = (PSS78_D[1]*T + PSS78_D[0])*T + 1.0; double CP = RTT*(BT + poly(P,PSS78_E)*P); BT -= RTT*AT; // Solve quadratic equation for C = RT35*RT*(1+C/AR+b) double cnd = 0.5*(sqrt(abs((BT*BT) + 4.0*AT*CP)) - BT)/AT; return cnd*STANDARD_CONDUCTIVITY; } else { return 0; // Zero salinity trap } } /** * Computes specific heat as a function of salinity, temperature and pressure. * * @param S Salinity PSS-78. * @param T Temperature (°C). * @param P Pressure (dbar), not including atmospheric pressure. * @return Specific heat (J/(kg×°C)). */ public static double specificHeat(final double S, final double T, double P) { P /= 10.0; final double SR = sqrt(S); return (poly(T,HEAT_CC) + (poly(T,HEAT_BB)*SR + poly(T,HEAT_AA))*S + (((poly(T,HEAT_C)*P + poly(T,HEAT_B) )*P + poly(T,HEAT_A) )*P) + ((((HEAT_J*SR+poly(T,HEAT_H))*S*P + (HEAT_G*SR+poly(T,HEAT_F))*S)*P + (poly(T,HEAT_E)*SR+poly(T,HEAT_D))*S )*P)); } /** * Computes fusion temperature (melting point) as a function of salinity and pressure. * * @param S Salinity PSS-78. * @param P Pressure (dbar), not including atmospheric pressure. * @return Melting point (°C). */ public static double fusionTemperature(final double S, final double P) { return (-0.0575 + 1.710523E-3*sqrt(S) + -2.154996E-4*S)*S + -7.53E-4*P; } /** * Computes adiabetic temperature gradient as a function of salinity, temperature and pressure. * * @param S Salinity PSS-78. * @param T Temperature (°C). * @param P Pressure (dbar), not including atmospheric pressure. * @return Adiabetic temperature gradient (°C/dbar). */ public static double adiabeticTemperatureGradient(double S, final double T, final double P) { S -= 35.0; return (poly(T,GRAD_A) + poly(T,GRAD_B)*S + (poly(T,GRAD_C) + poly(T,GRAD_D)*S + poly(T,GRAD_E)*P)*P); } /** * Computes depth as a function of pressure and latitude. * * @param P Pressure (dbar), not including atmospheric pressure. * @param lat Latitude in degrees (-90 to 90°) * @return Depth (m). */ public static double depth(final double P, double lat) { lat = sin(lat); lat *= lat; lat = 9.780318*( 1.0 + 5.2788E-3*lat + 2.36E-5*(lat*lat)); return poly(P,DEPTH_C)*P / (lat+(0.5*2.184E-6)*P); } /** * Computes sound velocity as a function of salinity, temperature and pressure. * * @param S Salinity PSS-78. * @param T Temperature (°C). * @param P Pressure (dbar), not including atmospheric pressure. * @return Sound velocity (m/s). */ public static double soundVelocity(final double S, final double T, final double P) { // S^0 terms final double CW = ((poly(T,SOUND_C3) *P + poly(T,SOUND_C2))*P + poly(T,SOUND_C1))*P + poly(T,SOUND_C0); // S^1 terms final double A = ((poly(T,SOUND_A3) *P + poly(T,SOUND_A2))*P + poly(T,SOUND_A1))*P + poly(T,SOUND_A0); // S^3/2 terms final double B = poly(T,SOUND_B0) + poly(T,SOUND_B1)*P; // S^2 terms final double D = SOUND_D0 + SOUND_D1*P; // sound speed return return CW + (D*S + B*sqrt(S) + A)*S; } /** * Computes saturation in disolved oxygen as a function of salinity and temperature. * * @param S Salinity PSS-78. * @param T Temperature (°C). * @return Saturation in disolved oxygen (µmol/kg). */ public static double saturationO2(final double S, double T) { T += 273.15; return exp(poly_inv(T,O2_AT) + S*poly_inv(T,O2_AS)); } /** * Calcule la valeur d'un polynôme. * Cette fonction calcule la valeur de: * * {@preformat java * y = C[0] + C[1]*x + C[2]*x² + C[3]*x³ * } * * où C est un vecteur de coéfficients transmis en argument. * Une exception sera levée si ce tableau ne contient pas * au moins 1 élément. * * @param x Valeur x à laquelle calculer le polynôme. * @param c Coéfficients C du polynôme. * @return La valeur du polynôme au x spécifié. * * @see #poly_inv(double,double[]) */ private static double poly(final double x, final double[] c) { int n = c.length-1; double y = c[n]; while (n > 0) { y = y*x + c[--n]; } return y; } /** * Calcule la valeur de: * * {@preformat java * y = C[0] + C[1]/x + C[2]/x² + C[3]/x³ * } * * où C est un vecteur de coéfficients transmis en argument. * Une exception sera levée si ce tableau ne contient pas * au moins 1 élément. * * @param x Valeur x à laquelle calculer le polynôme. * @param C Coéfficients C du polynôme. * @return La valeur du polynôme au x spécifié. * * @see #poly(double,double[]) */ private static double poly_inv(final double x, final double[] c) { int n = c.length-1; double y = c[n]; while (n > 0) { y = y/x + c[--n]; } return y; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy