org.geotoolkit.referencing.GeodeticCalculator Maven / Gradle / Ivy
/*
* Geotoolkit.org - An Open Source Java GIS Toolkit
* http://www.geotoolkit.org
*
* (C) 2004-2012, Open Source Geospatial Foundation (OSGeo)
* (C) 2009-2012, Geomatys
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* Portions of this file is adapted from Fortran code provided by NOAA.
* Programmed for CDC-6600 by LCDR L.Pfeifer NGS ROCKVILLE MD 18FEB75
* Modified for IBM SYSTEM 360 by John G.Gergen NGS ROCKVILLE MD 7507
* Source: ftp://ftp.ngs.noaa.gov/pub/pcsoft/for_inv.3d/source/
*/
package org.geotoolkit.referencing;
import java.awt.Shape;
import java.awt.geom.Line2D;
import java.awt.geom.Point2D;
import java.awt.geom.GeneralPath;
import java.text.Format;
import javax.measure.unit.NonSI;
import static java.lang.Math.*;
import org.opengis.referencing.datum.Datum;
import org.opengis.referencing.datum.Ellipsoid;
import org.opengis.referencing.datum.GeodeticDatum;
import org.opengis.referencing.operation.TransformException;
import org.opengis.referencing.cs.CoordinateSystemAxis;
import org.opengis.referencing.cs.CoordinateSystem;
import org.opengis.referencing.cs.AxisDirection;
import org.opengis.referencing.crs.CompoundCRS;
import org.opengis.referencing.crs.GeographicCRS;
import org.opengis.referencing.crs.CoordinateReferenceSystem;
import org.opengis.geometry.coordinate.Position;
import org.opengis.geometry.DirectPosition;
import org.geotoolkit.measure.Angle;
import org.geotoolkit.measure.Latitude;
import org.geotoolkit.measure.Longitude;
import org.geotoolkit.measure.CoordinateFormat;
import org.geotoolkit.geometry.DirectPosition2D;
import org.geotoolkit.geometry.TransformedDirectPosition;
import org.geotoolkit.referencing.datum.DefaultEllipsoid;
import org.geotoolkit.referencing.datum.DefaultGeodeticDatum;
import org.geotoolkit.referencing.crs.DefaultGeographicCRS;
import org.geotoolkit.referencing.cs.DefaultEllipsoidalCS;
import org.geotoolkit.resources.Errors;
import org.geotoolkit.resources.Vocabulary;
import org.geotoolkit.io.TableWriter;
import org.geotoolkit.util.logging.Logging;
import org.geotoolkit.util.NullArgumentException;
/**
* Performs geodetic calculations on an {@linkplain Ellipsoid ellipsoid}. This class encapsulates
* a generic ellipsoid and calculates the following properties:
*
*
* - Distance and azimuth between two points.
* - Point located at a given distance and azimuth from an other point.
*
*
* The calculation use the following informations:
*
*
* - The {@linkplain #setStartingPosition starting position}, which is always considered valid.
* It is initially set at (0,0) and can only be changed to another legitimate value.
* - Only one of the following:
*
* - The {@linkplain #setDestinationPosition destination position}, or
* - An {@linkplain #setDirection azimuth and distance}.
*
* The latest one set overrides the other and determines what will be calculated.
*
*
* Note: This class is not thread-safe. If geodetic calculations are needed in a multi-threads
* environment, create one distinct instance of {@code GeodeticCalculator} for each thread.
*
* @author Daniele Franzoni
* @author Martin Desruisseaux (Geomatys)
* @version 3.01
*
* @since 2.0
* @module
*/
public class GeodeticCalculator {
/**
* Tolerance factors from the strictest ({@code TOLERANCE_0})
* to the most relax one ({@code TOLERANCE_3}).
*/
private static final double TOLERANCE_0 = 5.0e-15, // tol0
TOLERANCE_1 = 5.0e-14, // tol1
TOLERANCE_2 = 5.0e-13, // tt
TOLERANCE_3 = 7.0e-3; // tol2
/**
* Tolerance factor for assertions. It has no impact on computed values.
*/
private static final double TOLERANCE_CHECK = 1E-8;
/**
* The transform from user coordinates to geodetic coordinates used for computation,
* or {@code null} if no transformations are required.
*/
private final TransformedDirectPosition userToGeodetic;
/**
* The coordinate reference system for all methods working on {@link Position} objects.
* If {@code null}, will be created the first time {@link #getCoordinateReferenceSystem}
* is invoked.
*/
private CoordinateReferenceSystem coordinateReferenceSystem;
/**
* The coordinate reference system for all methods working on {@link Point2D} objects.
* If {@code null}, will be created the first time {@link #getGeographicCRS} is invoked.
*/
private GeographicCRS geographicCRS;
/**
* The encapsulated ellipsoid.
*/
private final Ellipsoid ellipsoid;
/*
* The semi major axis of the refereced ellipsoid.
*/
private final double semiMajorAxis;
/*
* The semi minor axis of the refereced ellipsoid.
*/
private final double semiMinorAxis;
/*
* The eccenticity squared of the refereced ellipsoid.
*/
private final double eccentricitySquared;
/*
* The maximum orthodromic distance that could be calculated onto the referenced ellipsoid.
*/
private final double maxOrthodromicDistance;
/**
* GPNARC parameters computed from the ellipsoid.
*/
private final double A, B, C, D, E, F;
/**
* GPNHRI parameters computed from the ellipsoid.
*
* {@code f} if the flattening of the referenced ellipsoid. {@code f2},
* {@code f3} and {@code f4} are f2,
* f3 and f4 respectively.
*/
private final double fo, f, f2, f3, f4;
/**
* Parameters computed from the ellipsoid.
*/
private final double T1, T2, T4, T6;
/**
* Parameters computed from the ellipsoid.
*/
private final double a01, a02, a03, a21, a22, a23, a42, a43, a63;
/**
* The (latitude, longitude) coordinate of the first point
* in radians. This point is set by {@link #setStartingGeographicPoint}.
*/
private double lat1, long1;
/**
* The (latitude, longitude) coordinate of the destination point
* in radians. This point is set by {@link #setDestinationGeographicPoint}.
*/
private double lat2, long2;
/**
* The distance and azimuth (in radians) from the starting point
* ({@link #long1}, {@link #lat1}) to the destination point
* ({@link #long2}, {@link #lat2}).
*/
private double distance, azimuth;
/**
* Tell if the destination point is valid.
* {@code false} if {@link #long2} and {@link #lat2} need to be computed.
*/
private boolean destinationValid;
/**
* Tell if the azimuth and the distance are valids.
* {@code false} if {@link #distance} and {@link #azimuth} need to be computed.
*/
private boolean directionValid;
/**
* {@code true} if the source and destination points are almost antipodal. If {@code true},
* then the distance and direction computed by {@link #computeDirection} are likely to be
* inaccurate.
*/
private boolean antipodal;
/**
* Constructs a new geodetic calculator associated with the WGS84 ellipsoid.
*/
public GeodeticCalculator() {
this(DefaultEllipsoid.WGS84);
}
/**
* Constructs a new geodetic calculator associated with the specified ellipsoid.
* All calculations done by the new instance are referenced to this ellipsoid.
*
* @param ellipsoid The ellipsoid onto which calculates distances and azimuths.
*/
public GeodeticCalculator(final Ellipsoid ellipsoid) {
this(ellipsoid, null);
}
/**
* Constructs a new geodetic calculator expecting coordinates in the supplied CRS.
* The ellipsoid will be inferred from the CRS.
*
* @param crs The reference system for the {@link Position} objects.
*
* @since 2.2
*/
public GeodeticCalculator(final CoordinateReferenceSystem crs) {
this(CRS.getEllipsoid(crs), crs);
}
/**
* For internal use by public constructors only.
*/
private GeodeticCalculator(final Ellipsoid ellipsoid, final CoordinateReferenceSystem crs) {
if (ellipsoid == null) {
throw new NullArgumentException(Errors.format(Errors.Keys.NULL_ARGUMENT_$1, "ellipsoid"));
}
this.ellipsoid = ellipsoid;
this.semiMajorAxis = ellipsoid.getSemiMajorAxis();
this.semiMinorAxis = ellipsoid.getSemiMinorAxis();
if (crs != null) {
coordinateReferenceSystem = crs;
geographicCRS = getGeographicCRS(crs);
/*
* Note: there is no need to set Hints.LENIENT_DATUM_SHIFT to Boolean.TRUE here since
* the target CRS computed by our internal getGeographicCRS(crs) method should
* returns a CRS using the same datum than the specified CRS. If the factory
* fails with a "Bursa-Wolf parameters required" error message, then we probably
* have a bug somewhere.
*/
userToGeodetic = new TransformedDirectPosition(crs, geographicCRS, null);
} else {
userToGeodetic = null;
}
/* calculation of GPNHRI parameters */
f = (semiMajorAxis-semiMinorAxis) / semiMajorAxis;
fo = 1.0 - f;
f2 = f*f;
f3 = f*f2;
f4 = f*f3;
eccentricitySquared = f * (2.0-f);
/* Calculation of GNPARC parameters */
final double E2 = eccentricitySquared;
final double E4 = E2*E2;
final double E6 = E4*E2;
final double E8 = E6*E2;
final double EX = E8*E2;
A = 1.0+0.75*E2+0.703125*E4+0.68359375 *E6+0.67291259765625*E8+0.6661834716796875 *EX;
B = 0.75*E2+0.9375 *E4+1.025390625*E6+1.07666015625 *E8+1.1103057861328125 *EX;
C = 0.234375*E4+0.41015625 *E6+0.538330078125 *E8+0.63446044921875 *EX;
D = 0.068359375*E6+0.15380859375 *E8+0.23792266845703125*EX;
E = 0.01922607421875*E8+0.0528717041015625 *EX;
F = 0.00528717041015625*EX;
maxOrthodromicDistance = semiMajorAxis * (1.0 - E2) * PI * A - 1.0;
T1 = 1.0;
T2 = -0.25*f*(1.0 + f + f2);
T4 = 0.1875 * f2 * (1.0+2.25*f);
T6 = 0.1953125 * f3;
final double a = f3*(1.0+2.25*f);
a01 = -f2*(1.0+f+f2)/4.0;
a02 = 0.1875*a;
a03 = -0.1953125*f4;
a21 = -a01;
a22 = -0.25*a;
a23 = 0.29296875*f4;
a42 = 0.03125*a;
a43 = 0.05859375*f4;
a63 = 5.0*f4/768.0;
}
///////////////////////////////////////////////////////////
//////// ////////
//////// H E L P E R M E T H O D S ////////
//////// ////////
///////////////////////////////////////////////////////////
/**
* Returns the first two-dimensional geographic CRS using standard axis, creating one if needed.
*/
private static GeographicCRS getGeographicCRS(final CoordinateReferenceSystem crs) {
if (crs instanceof GeographicCRS) {
final CoordinateSystem cs = crs.getCoordinateSystem();
if (cs.getDimension() == 2 &&
isStandard(cs.getAxis(0), AxisDirection.EAST) &&
isStandard(cs.getAxis(1), AxisDirection.NORTH))
{
return (GeographicCRS) crs;
}
}
final Datum datum = CRS.getDatum(crs);
if (datum instanceof GeodeticDatum) {
return new DefaultGeographicCRS("Geodetic", (GeodeticDatum) datum,
DefaultEllipsoidalCS.GEODETIC_2D);
}
if (crs instanceof CompoundCRS) {
for (final CoordinateReferenceSystem component : ((CompoundCRS) crs).getComponents()) {
final GeographicCRS candidate = getGeographicCRS(component);
if (candidate != null) {
return candidate;
}
}
}
throw new IllegalArgumentException(Errors.format(Errors.Keys.ILLEGAL_COORDINATE_REFERENCE_SYSTEM));
}
/**
* Returns {@code true} if the specified axis is oriented toward the specified direction and
* uses decimal degrees units.
*/
private static boolean isStandard(final CoordinateSystemAxis axis, final AxisDirection direction) {
return direction.equals(axis.getDirection()) && NonSI.DEGREE_ANGLE.equals(axis.getUnit());
}
/**
* Returns an angle between -{@linkplain Math#PI PI} and {@linkplain Math#PI PI}
* equivalent to the specified angle in radians.
*
* @param alpha An angle value in radians.
* @return The angle between between -{@linkplain Math#PI PI} and {@linkplain Math#PI PI}.
*/
private static double castToAngleRange(final double alpha) {
return alpha - (2*PI) * floor(alpha / (2*PI) + 0.5);
}
/**
* Checks the latidude validity. The argument {@code latidude} should be
* greater or equal than -90 degrees and lower or equals than +90 degrees. As
* a convenience, this method returns the latitude in radians.
*
* @param latitude The latitude value in decimal degrees.
* @return The latitude value in radians.
* @throws IllegalArgumentException if {@code latitude} is not between -90 and +90 degrees.
*/
private static double checkLatitude(final double latitude) throws IllegalArgumentException {
if (latitude >= Latitude.MIN_VALUE && latitude <= Latitude.MAX_VALUE) {
return toRadians(latitude);
}
throw new IllegalArgumentException(Errors.format(
Errors.Keys.LATITUDE_OUT_OF_RANGE_$1, new Latitude(latitude)));
}
/**
* Checks the longitude validity. The argument {@code longitude} should be
* greater or equal than -180 degrees and lower or equals than +180 degrees. As
* a convenience, this method returns the longitude in radians.
*
* @param longitude The longitude value in decimal degrees.
* @return The longitude value in radians.
* @throws IllegalArgumentException if {@code longitude} is not between -180 and +180 degrees.
*/
private static double checkLongitude(final double longitude) throws IllegalArgumentException {
if (longitude >= Longitude.MIN_VALUE && longitude <= Longitude.MAX_VALUE) {
return toRadians(longitude);
}
throw new IllegalArgumentException(Errors.format(
Errors.Keys.LONGITUDE_OUT_OF_RANGE_$1, new Longitude(longitude)));
}
/**
* Checks the azimuth validity. The argument {@code azimuth} should be
* greater or equal than -180 degrees and lower or equals than +180 degrees.
* As a convenience, this method returns the azimuth in radians.
*
* @param azimuth The azimuth value in decimal degrees.
* @return The azimuth value in radians.
* @throws IllegalArgumentException if {@code azimuth} is not between -180 and +180 degrees.
*/
private static double checkAzimuth(final double azimuth) throws IllegalArgumentException {
if (azimuth >= -180.0 && azimuth <= 180.0) {
return toRadians(azimuth);
}
throw new IllegalArgumentException(Errors.format(
Errors.Keys.AZIMUTH_OUT_OF_RANGE_$1, new Longitude(azimuth)));
}
/**
* Checks the orthodromic distance validity. Arguments {@code orthodromicDistance}
* should be greater or equal than 0 and lower or equals than the maximum orthodromic distance.
*
* @param distance The orthodromic distance value.
* @throws IllegalArgumentException if {@code orthodromic distance} is not between
* 0 and the maximum orthodromic distance.
*/
private void checkOrthodromicDistance(final double distance)
throws IllegalArgumentException
{
if (!(distance >= 0.0 && distance <= maxOrthodromicDistance)) {
throw new IllegalArgumentException(Errors.format(Errors.Keys.DISTANCE_OUT_OF_RANGE_$4,
distance, 0.0, maxOrthodromicDistance, ellipsoid.getAxisUnit()));
}
}
/**
* Checks the number of verteces in a curve. Arguments {@code numberOfPoints}
* should be not negative.
*
* @param numberOfPonits The number of verteces in a curve.
* @throws IllegalArgumentException if {@code numberOfVerteces} is negative.
*/
private static void checkNumberOfPoints(final int numberOfPoints)
throws IllegalArgumentException
{
if (numberOfPoints < 0) {
throw new IllegalArgumentException(Errors.format(Errors.Keys.ILLEGAL_ARGUMENT_$2,
"numberOfPoints", numberOfPoints));
}
}
/**
* Returns a localized "No convergence" error message. The error message
* includes informations about starting and destination points.
*/
private String getNoConvergenceErrorMessage() {
final CoordinateFormat cf = new CoordinateFormat();
return Errors.format(Errors.Keys.NO_CONVERGENCE_$2,
format(cf, long1, lat1), format(cf, long2, lat2));
}
/**
* Format the specified coordinates using the specified formatter, which should be an instance
* of {@link CoordinateFormat}.
*/
private static String format(final Format cf, final double longitude, final double latitude) {
return cf.format(new DirectPosition2D(toDegrees(longitude), toDegrees(latitude)));
}
///////////////////////////////////////////////////////////////
//////// ////////
//////// G E O D E T I C M E T H O D S ////////
//////// ////////
///////////////////////////////////////////////////////////////
/**
* Returns the coordinate reference system for all methods working on {@link Position} objects.
* This is the CRS specified at {@linkplain #GeodeticCalculator(CoordinateReferenceSystem)
* construction time}.
*
* @return The CRS for all {@link Position}s.
*
* @since 2.2
*/
public CoordinateReferenceSystem getCoordinateReferenceSystem() {
if (coordinateReferenceSystem == null) {
coordinateReferenceSystem = getGeographicCRS();
}
return coordinateReferenceSystem;
}
/**
* Returns the geographic coordinate reference system for all methods working
* on {@link Point2D} objects. This is inferred from the CRS specified at
* {@linkplain #GeodeticCalculator(CoordinateReferenceSystem) construction time}.
*
* @return The CRS for {@link Point2D}s.
*
* @since 2.3
*/
public GeographicCRS getGeographicCRS() {
if (geographicCRS == null) {
final String name = Vocabulary.format(Vocabulary.Keys.GEODETIC_2D);
geographicCRS = new DefaultGeographicCRS(name, new DefaultGeodeticDatum(
name, getEllipsoid()), DefaultEllipsoidalCS.GEODETIC_2D);
}
return geographicCRS;
}
/**
* Returns the referenced ellipsoid.
*
* @return The referenced ellipsoid.
*/
public Ellipsoid getEllipsoid() {
return ellipsoid;
}
/**
* Set the starting point in geographic coordinates.
* The {@linkplain #getAzimuth() azimuth},
* the {@linkplain #getOrthodromicDistance() orthodromic distance} and
* the {@linkplain #getDestinationGeographicPoint() destination point}
* are discarded. They will need to be specified again.
*
* @param longitude The longitude in decimal degrees between -180 and +180°
* @param latitude The latitude in decimal degrees between -90 and +90°
* @throws IllegalArgumentException if the longitude or the latitude is out of bounds.
*
* @since 2.3
*/
public void setStartingGeographicPoint(double longitude, double latitude)
throws IllegalArgumentException
{
// Check first in case an exception is raised
// (in other words, we change all or nothing).
longitude = checkLongitude(longitude);
latitude = checkLatitude (latitude);
// Check passed. Now performs the changes in this object.
long1 = longitude;
lat1 = latitude;
destinationValid = false;
directionValid = false;
}
/**
* Set the starting point in geographic coordinates. The x and y
* coordinates must be the longitude and latitude in decimal degrees, respectively.
*
* This is a convenience method for
* {@linkplain #setStartingGeographicPoint(double,double)
* setStartingGeographicPoint}(x,y)
.
*
* @param point The starting point.
* @throws IllegalArgumentException if the longitude or the latitude is out of bounds.
*
* @since 2.3
*/
public void setStartingGeographicPoint(final Point2D point) throws IllegalArgumentException {
setStartingGeographicPoint(point.getX(), point.getY());
}
/**
* Set the starting position in user coordinates, which doesn't need to be geographic.
* The coordinate reference system is the one specified to the
* {@linkplain #GeodeticCalculator(CoordinateReferenceSystem) constructor}.
*
* @param position The position in user coordinate reference system.
* @throws TransformException if the position can't be transformed.
*
* @since 2.3
*/
public void setStartingPosition(final Position position) throws TransformException {
DirectPosition p = position.getDirectPosition();
if (userToGeodetic != null) {
userToGeodetic.transform(p);
p = userToGeodetic;
}
setStartingGeographicPoint(p.getOrdinate(0), p.getOrdinate(1));
}
/**
* Returns the starting point in geographic coordinates. The x and y
* coordinates are the longitude and latitude in decimal degrees, respectively. If the
* starting point has never been set, then the default value is (0,0).
*
* @return The starting point in geographic coordinates.
*
* @since 2.3
*/
public Point2D getStartingGeographicPoint() {
return new Point2D.Double(toDegrees(long1), toDegrees(lat1));
}
/**
* Returns the starting position in user coordinates, which doesn't need to be geographic.
* The coordinate reference system is the one specified to the
* {@linkplain #GeodeticCalculator(CoordinateReferenceSystem) constructor}.
*
* @return The starting position in user CRS.
* @throws TransformException if the position can't be transformed to user coordinates.
*
* @since 2.3
*/
public DirectPosition getStartingPosition() throws TransformException {
DirectPosition position = userToGeodetic;
if (position == null) {
position = new DirectPosition2D();
}
position.setOrdinate(0, toDegrees(long1));
position.setOrdinate(1, toDegrees( lat1));
if (userToGeodetic != null) {
position = userToGeodetic.inverseTransform();
}
return position;
}
/**
* Set the destination point in geographic coordinates. The azimuth and distance values
* will be updated as a side effect of this call. They will be recomputed the next time
* {@link #getAzimuth()} or {@link #getOrthodromicDistance()} are invoked.
*
* @param longitude The longitude in decimal degrees between -180 and +180°
* @param latitude The latgitude in decimal degrees between -90 and +90°
* @throws IllegalArgumentException if the longitude or the latitude is out of bounds.
*
* @since 2.3
*/
public void setDestinationGeographicPoint(double longitude, double latitude)
throws IllegalArgumentException
{
// Check first in case an exception is raised
// (in other words, we change all or nothing).
longitude = checkLongitude(longitude);
latitude = checkLatitude (latitude);
// Check passed. Now performs the changes in this object.
long2 = longitude;
lat2 = latitude;
destinationValid = true;
directionValid = false;
}
/**
* Set the destination point in geographic coordinates. The x and y
* coordinates must be the longitude and latitude in decimal degrees, respectively.
*
* This is a convenience method for
* {@linkplain #setDestinationGeographicPoint(double,double)
* setDestinationGeographicPoint}(x,y)
.
*
* @param point The destination point.
* @throws IllegalArgumentException if the longitude or the latitude is out of bounds.
*
* @since 2.3
*/
public void setDestinationGeographicPoint(final Point2D point)
throws IllegalArgumentException
{
setDestinationGeographicPoint(point.getX(), point.getY());
}
/**
* Set the destination position in user coordinates, which doesn't need to be geographic.
* The coordinate reference system is the one specified to the
* {@linkplain #GeodeticCalculator(CoordinateReferenceSystem) constructor}.
*
* @param position The position in user coordinate reference system.
* @throws TransformException if the position can't be transformed.
*
* @since 2.2
*/
public void setDestinationPosition(final Position position) throws TransformException {
DirectPosition p = position.getDirectPosition();
if (userToGeodetic != null) {
userToGeodetic.transform(p);
p = userToGeodetic;
}
setDestinationGeographicPoint(p.getOrdinate(0), p.getOrdinate(1));
}
/**
* Returns the destination point. This method returns the point set by the last
* call to a {@linkplain #setDestinationGeographicPoint(double,double)
* setDestinationGeographicPoint}(...)
* method, except if
* {@linkplain #setDirection(double,double) setDirection}(...)
has been
* invoked after. In this later case, the destination point will be computed from the
* {@linkplain #getStartingGeographicPoint starting point} to the azimuth and distance
* specified.
*
* @return The destination point. The x and y coordinates
* are the longitude and latitude in decimal degrees, respectively.
* @throws IllegalStateException if the azimuth and the distance have not been set.
*
* @since 2.3
*/
public Point2D getDestinationGeographicPoint() throws IllegalStateException {
if (!destinationValid) {
computeDestinationPoint();
}
return new Point2D.Double(toDegrees(long2), toDegrees(lat2));
}
/**
* Returns the destination position in user coordinates, which doesn't need to be geographic.
* The coordinate reference system is the one specified to the
* {@linkplain #GeodeticCalculator(CoordinateReferenceSystem) constructor}.
*
* @return The destination position in user CRS.
* @throws TransformException if the position can't be transformed to user coordinates.
*
* @since 2.2
*/
public DirectPosition getDestinationPosition() throws TransformException {
if (!destinationValid) {
computeDestinationPoint();
}
DirectPosition position = userToGeodetic;
if (position == null) {
position = new DirectPosition2D();
}
position.setOrdinate(0, toDegrees(long2));
position.setOrdinate(1, toDegrees( lat2));
if (userToGeodetic != null) {
position = userToGeodetic.inverseTransform();
}
return position;
}
/**
* Set the azimuth and the distance from the {@linkplain #getStartingGeographicPoint
* starting point}. The destination point will be updated as a side effect of this call.
* It will be recomputed the next time {@link #getDestinationGeographicPoint()} is invoked.
*
* @param azimuth The azimuth in decimal degrees from -180° to 180°.
* @param distance The orthodromic distance in the same units as the
* {@linkplain #getEllipsoid ellipsoid} axis.
* @throws IllegalArgumentException if the azimuth or the distance is out of bounds.
*
* @see #getAzimuth
* @see #getOrthodromicDistance
*/
public void setDirection(double azimuth, final double distance) throws IllegalArgumentException {
// Check first in case an exception is raised
// (in other words, we change all or nothing).
azimuth = checkAzimuth(azimuth);
checkOrthodromicDistance(distance);
// Check passed. Now performs the changes in this object.
this.azimuth = azimuth;
this.distance = distance;
destinationValid = false;
directionValid = true;
}
/**
* Returns the azimuth. This method returns the value set by the last call to
* {@linkplain #setDirection(double,double) setDirection}(azimuth,distance)
,
* except if {@linkplain #setDestinationGeographicPoint(double,double)
* setDestinationGeographicPoint}(...)
has been invoked after. In this later case, the
* azimuth will be computed from the {@linkplain #getStartingGeographicPoint starting point}
* to the destination point.
*
* @return The azimuth, in decimal degrees from -180° to +180°.
* @throws IllegalStateException if the destination point has not been set.
*
* @todo Current implementation will provides an inaccurate value for antipodal points. For
* now a warning is logged in such case. In a future version (if we have volunter time)
* we should provides a solution (search Internet for "azimuth antipodal
* points").
*/
public double getAzimuth() throws IllegalStateException {
if (!directionValid) {
computeDirection();
if (antipodal) {
Logging.getLogger(GeodeticCalculator.class).warning(
"Azimuth is inaccurate for antipodal points.");
}
}
return toDegrees(azimuth);
}
/**
* Returns the orthodromic distance. This method returns the value set by the last call to
* {@linkplain #setDirection(double,double) setDirection}(azimuth,distance)
,
* except if {@linkplain #setDestinationGeographicPoint(double,double)
* setDestinationGeographicPoint}(...)
has been invoked after. In this later case, the
* distance will be computed from the {@linkplain #getStartingGeographicPoint starting point}
* to the destination point.
*
* @return The orthodromic distance, in the same units as the
* {@linkplain #getEllipsoid ellipsoid} axis.
* @throws IllegalStateException if the destination point has not been set.
*/
public double getOrthodromicDistance() throws IllegalStateException {
if (!directionValid) {
computeDirection();
if (antipodal) {
// If we are at antipodes, DefaultEllipsoid will provides a better estimation.
if (ellipsoid instanceof DefaultEllipsoid) {
return ((DefaultEllipsoid) ellipsoid).orthodromicDistance(
toDegrees(long1), toDegrees(lat1), toDegrees(long2), toDegrees(lat2));
}
} else {
assert checkOrthodromicDistance() : this;
}
}
return distance;
}
/**
* Computes the orthodromic distance using the algorithm implemented in the Geotk's
* ellipsoid class (if available), and check if the error is smaller than some
* tolerance error.
*/
private boolean checkOrthodromicDistance() {
if (ellipsoid instanceof DefaultEllipsoid) {
double check;
final DefaultEllipsoid ellipsoid = (DefaultEllipsoid) this.ellipsoid;
check = ellipsoid.orthodromicDistance(toDegrees(long1), toDegrees(lat1),
toDegrees(long2), toDegrees(lat2));
check = abs(distance - check);
return check <= (distance+1) * TOLERANCE_CHECK;
}
return true;
}
/**
* Computes the destination point from the {@linkplain #getStartingGeographicPoint starting
* point}, the {@linkplain #getAzimuth azimuth} and the {@linkplain #getOrthodromicDistance
* orthodromic distance}.
*
* @throws IllegalStateException if the azimuth and the distance have not been set.
*
* @see #getDestinationGeographicPoint
*/
private void computeDestinationPoint() throws IllegalStateException {
if (!directionValid) {
throw new IllegalStateException(Errors.format(Errors.Keys.DIRECTION_NOT_SET));
}
// Protect internal variables from changes
final double lat1 = this.lat1;
final double long1 = this.long1;
final double azimuth = this.azimuth;
final double distance = this.distance;
/*
* Solution of the geodetic direct problem after T.Vincenty.
* Modified Rainsford's method with Helmert's elliptical terms.
* Effective in any azimuth and at any distance short of antipodal.
*
* Latitudes and longitudes in radians positive North and East.
* Forward azimuths at both points returned in radians from North.
*
* Programmed for CDC-6600 by LCDR L.Pfeifer NGS ROCKVILLE MD 18FEB75
* Modified for IBM SYSTEM 360 by John G.Gergen NGS ROCKVILLE MD 7507
* Ported from Fortran to Java by Daniele Franzoni.
*
* Source: ftp://ftp.ngs.noaa.gov/pub/pcsoft/for_inv.3d/source/forward.for
* subroutine DIRECT1
*/
double tu = fo*sin(lat1) / cos(lat1);
double sf = sin(azimuth);
double cf = cos(azimuth);
double baz = (cf != 0) ? atan2(tu, cf) * 2.0 : 0;
double cu = 1 / sqrt(tu*tu + 1.0);
double su = tu*cu;
double sa = cu*sf;
double c2a = 1.0 - sa*sa;
double x = sqrt((1.0/fo/fo - 1) * c2a + 1.0) + 1.0;
x = (x - 2.0) / x;
double c = 1.0 - x;
c = (x*x / 4.0 + 1.0) / c;
double d = (0.375 * x*x - 1.0) * x;
tu = distance / fo / semiMajorAxis / c;
double y = tu;
double sy, cy, cz, e;
do {
sy = sin(y);
cy = cos(y);
cz = cos(baz + y);
e = cz*cz*2.0 - 1.0;
c = y;
x = e*cy;
y = e + e - 1.0;
y = (((sy*sy*4.0 - 3.0) * y*cz*d/6.0 + x) * d/4.0 - cz) * sy*d + tu;
} while (abs(y-c) > TOLERANCE_1);
baz = cu*cy*cf - su*sy;
c = fo * hypot(sa, baz);
d = su*cy + cu*sy*cf;
lat2 = atan2(d,c);
c = cu*cy - su*sy*cf;
x = atan2(sy*sf, c);
c = ((-3.0 * c2a + 4.0) * f + 4.0) * c2a * f / 16.0;
d = ((e * cy * c + cz) * sy * c + y) * sa;
long2 = long1+x - (1.0-c)*d*f;
long2 = castToAngleRange(long2);
destinationValid = true;
}
/**
* Calculates the meridian arc length between two points in the same meridian
* in the referenced ellipsoid.
*
* @param latitude1 The latitude of the first point (in decimal degrees).
* @param latitude2 The latitude of the second point (in decimal degrees).
* @return Returned the meridian arc length between latitude1 and latitude2
*/
public double getMeridianArcLength(final double latitude1, final double latitude2) {
return getMeridianArcLengthRadians(checkLatitude(latitude1), checkLatitude(latitude2));
}
/**
* Calculates the meridian arc length between two points in the same meridian
* in the referenced ellipsoid.
*
* @param φ1 The latitude of the first point (in radians).
* @param φ2 The latitude of the second point (in radians).
* @return Returned the meridian arc length between φ1 and φ2
*/
private double getMeridianArcLengthRadians(final double φ1, final double φ2) {
/*
* Latitudes φ1 and φ2 in radians positive North and East.
* Forward azimuths at both points returned in radians from North.
*
* Source: ftp://ftp.ngs.noaa.gov/pub/pcsoft/for_inv.3d/source/inverse.for
* subroutine GPNARC
* version 200005.26
* written by Robert (Sid) Safford
*
* Ported from Fortran to Java by Daniele Franzoni.
*/
double s1 = abs(φ1);
double s2 = abs(φ2);
double da = (φ2-φ1);
// Check for a 90 degree lookup
if (s1 > TOLERANCE_0 || s2 <= (PI/2 - TOLERANCE_0) || s2 >= (PI/2 + TOLERANCE_0)) {
final double db = sin(φ2 * 2.0) - sin(φ1 * 2.0);
final double dc = sin(φ2 * 4.0) - sin(φ1 * 4.0);
final double dd = sin(φ2 * 6.0) - sin(φ1 * 6.0);
final double de = sin(φ2 * 8.0) - sin(φ1 * 8.0);
final double df = sin(φ2 * 10.0) - sin(φ1 * 10.0);
// Compute the S2 part of the series expansion
s2 = -db*B/2.0 + dc*C/4.0 - dd*D/6.0 + de*E/8.0 - df*F/10.0;
}
// Compute the S1 part of the series expansion
s1 = da * A;
// Compute the arc length
return abs(semiMajorAxis * (1.0 - eccentricitySquared) * (s1 + s2));
}
/**
* Computes the azimuth and orthodromic distance from the
* {@linkplain #getStartingGeographicPoint starting point} and the
* {@linkplain #getDestinationGeographicPoint destination point}.
*
* @throws IllegalStateException if the destination point has not been set.
*
* @see #getAzimuth
* @see #getOrthodromicDistance
*/
private void computeDirection() throws IllegalStateException {
if (!destinationValid) {
throw new IllegalStateException(Errors.format(Errors.Keys.DESTINATION_NOT_SET));
}
// Protect internal variables from change.
final double long1 = this.long1;
final double lat1 = this.lat1;
final double long2 = this.long2;
final double lat2 = this.lat2;
/*
* Solution of the geodetic inverse problem after T.Vincenty.
* Modified Rainsford's method with Helmert's elliptical terms.
* Effective in any azimuth and at any distance short of antipodal.
*
* Latitudes and longitudes in radians positive North and East.
* Forward azimuths at both points returned in radians from North.
*
* Programmed for CDC-6600 by LCDR L.Pfeifer NGS ROCKVILLE MD 18FEB75
* Modified for IBM SYSTEM 360 by John G.Gergen NGS ROCKVILLE MD 7507
* Ported from Fortran to Java by Daniele Franzoni.
*
* Source: ftp://ftp.ngs.noaa.gov/pub/pcsoft/for_inv.3d/source/inverse.for
* subroutine GPNHRI
* version 200208.09
* written by robert (sid) safford
*/
final double dlon = castToAngleRange(long2 - long1);
final double ss = abs(dlon);
if (ss < TOLERANCE_1) {
distance = getMeridianArcLengthRadians(lat1, lat2);
azimuth = (lat2 > lat1) ? 0.0 : PI;
directionValid = true;
antipodal = false;
return;
}
antipodal = (PI - ss < 2*TOLERANCE_3) && (abs(lat1 + lat2) < 2*TOLERANCE_3);
/*
* Computes the limit in longitude (alimit), it is equal
* to twice the distance from the equator to the pole,
* as measured along the equator.
*/
// tests for antinodal difference
final double ESQP = eccentricitySquared / (1.0-eccentricitySquared);
final double alimit = PI * fo;
if (ss >= alimit &&
lat1 < TOLERANCE_3 && lat1 > -TOLERANCE_3 &&
lat2 < TOLERANCE_3 && lat2 > -TOLERANCE_3)
{
// Computes an approximate AZ
final double cons = (PI - ss) / (PI * f);
double az = asin(cons);
double az_temp, s, ao;
int iter = 0;
do {
if (++iter > 8) {
throw new ArithmeticException(getNoConvergenceErrorMessage());
}
s = cos(az);
final double c2 = s*s;
// Compute new AO
ao = T1 + T2*c2 + T4*c2*c2 + T6*c2*c2*c2;
final double cs = cons / ao;
s = asin(cs);
az_temp = az;
az = s;
} while (abs(s - az_temp) >= TOLERANCE_2);
final double az1 = (dlon < 0.0) ? 2.0*PI - s : s;
azimuth = castToAngleRange(az1);
s = cos(az1);
// Equatorial - geodesic(S-s) SMS
final double u2 = ESQP*s*s;
final double u4 = u2*u2;
final double u6 = u4*u2;
final double u8 = u6*u2;
final double bo = 1.0 +
0.25 *u2 +
0.046875 *u4 +
0.01953125 *u6 +
-0.01068115234375*u8;
s = sin(az1);
final double sms = semiMajorAxis*PI*(1.0 - f*abs(s)*ao - bo*fo);
distance = semiMajorAxis*ss - sms;
directionValid = true;
return;
}
// the reduced latitudes
final double u1 = atan(fo*sin(lat1) / cos(lat1));
final double u2 = atan(fo*sin(lat2) / cos(lat2));
final double su1 = sin(u1);
final double cu1 = cos(u1);
final double su2 = sin(u2);
final double cu2 = cos(u2);
double xy, w, q2, q4, q6, r2, r3, sig, ssig, slon, clon, sinalf, ab=dlon;
int kcount = 0;
do {
if (++kcount > 12) {
throw new ArithmeticException(getNoConvergenceErrorMessage());
}
clon = cos(ab);
slon = sin(ab);
final double csig = su1*su2 + cu1*cu2*clon;
ssig = hypot(slon*cu2, su2*cu1 - su1*cu2*clon);
sig = atan2(ssig, csig);
sinalf = cu1*cu2*slon/ssig;
w = (1.0 - sinalf*sinalf);
final double t4 = w*w;
final double t6 = w*t4;
// the coefficents of type a
final double ao = f+a01*w+a02*t4+a03*t6;
final double a2 = a21*w+a22*t4+a23*t6;
final double a4 = a42*t4+a43*t6;
final double a6 = a63*t6;
// the multiple angle functions
double qo = 0.0;
if (w > TOLERANCE_0) {
qo = -2.0*su1*su2/w;
}
q2 = csig + qo;
q4 = 2.0*q2*q2 - 1.0;
q6 = q2*(4.0*q2*q2 - 3.0);
r2 = 2.0*ssig*csig;
r3 = ssig*(3.0 - 4.0*ssig*ssig);
// the longitude difference
final double s = sinalf*(ao*sig + a2*ssig*q2 + a4*r2*q4 + a6*r3*q6);
double xz = dlon+s;
xy = abs(xz - ab);
ab = dlon+s;
} while (xy >= TOLERANCE_1);
final double z = ESQP*w;
final double bo = 1.0 + z*( 1.0/4.0 + z*(-3.0/ 64.0 + z*( 5.0/256.0 - z*(175.0/16384.0))));
final double b2 = z*(-1.0/4.0 + z*( 1.0/ 16.0 + z*(-15.0/512.0 + z*( 35.0/ 2048.0))));
final double b4 = z*z*(-1.0/ 128.0 + z*( 3.0/512.0 - z*( 35.0/ 8192.0)));
final double b6 = z*z*z*(-1.0/1536.0 + z*( 5.0/ 6144.0));
// The distance in ellispoid axis units.
distance = semiMinorAxis * (bo*sig + b2*ssig*q2 + b4*r2*q4 + b6*r3*q6);
double az1 = (dlon < 0) ? PI*1.5 : PI/2;
// now compute the az1 & az2 for latitudes not on the equator
if ((abs(su1) >= TOLERANCE_0) || (abs(su2) >= TOLERANCE_0)) {
final double tana1 = slon*cu2 / (su2*cu1 - clon*su1*cu2);
final double sina1 = sinalf/cu1;
// azimuths from north,longitudes positive east
az1 = atan2(sina1, sina1/tana1);
}
azimuth = castToAngleRange(az1);
directionValid = true;
}
/**
* Calculates the geodetic curve between two points in the referenced ellipsoid.
* A curve in the ellipsoid is a path which points contain the longitude and latitude
* of the points in the geodetic curve. The geodetic curve is computed from the
* {@linkplain #getStartingGeographicPoint starting point} to the
* {@linkplain #getDestinationGeographicPoint destination point}.
*
* @param numberOfPoints The number of vertex in the geodetic curve.
* NOTE: This argument is only a hint and may be ignored
* in future version (if we compute a real curve rather than a list of line
* segments).
* @return The path that represents the geodetic curve from the
* {@linkplain #getStartingGeographicPoint starting point} to the
* {@linkplain #getDestinationGeographicPoint destination point}.
*
* @todo We should check for cases where the path cross the 90°N, 90°S, 90°E or 90°W boundaries.
*/
public Shape getGeodeticCurve(final int numberOfPoints) {
checkNumberOfPoints(numberOfPoints);
if (!directionValid) {
computeDirection();
}
if (!destinationValid) {
computeDestinationPoint();
}
final double long2 = this.long2;
final double lat2 = this.lat2;
final double distance = this.distance;
final double deltaDistance = distance / numberOfPoints;
final GeneralPath path = new GeneralPath(GeneralPath.WIND_EVEN_ODD, numberOfPoints+1);
path.moveTo((float) toDegrees(long1), (float) toDegrees(lat1));
for (int i=1; ix1) ? Boolean.valueOf(azimuth >= 0) :
(x2y1) ? Boolean.valueOf(azimuth >= -90 && azimuth <= +90) :
(y2= +90) : null;
assert xDirect==null || yDirect==null || xDirect.equals(yDirect) : this;
if (!Boolean.FALSE.equals(xDirect) && !Boolean.FALSE.equals(yDirect)) {
return new Line2D.Double(x1, y1, x2, y2);
}
if (Boolean.FALSE.equals(yDirect)) {
/*
* Crossing North or South pole is more complicated than what we do for now: If we
* follow the 0° longitude toward North, then we have to follow the 180° longitude
* from North to South pole and follow the 0° longitude again toward North up to
* the destination point.
*/
throw new UnsupportedOperationException("Crossing pole is not yet implemented");
}
/*
* The azimuth is heading in the opposite direction of the path from P1 to P2. Computes
* the intersection points at the 90°N / 90°S boundaries, or the 180°E / 180°W boundaries.
* (xout,yout) is the point where the path goes out (initialized to the corner where the
* azimuth is heading); (xin,yin) is the point where the path come back in the opposite
* hemisphere.
*/
double xout = (x2 >= x1) ? -180 : +180;
double yout = (y2 >= y1) ? -90 : +90;
double xin = -xout;
double yin = -yout;
final double dx = x2-x1;
final double dy = y2-y1;
if (dx == 0) {
xin = xout = x1; // Vertical line.
} else if (dy == 0) {
yin = yout = y1; // Horizontal line.
} else {
/*
* The path is diagonal (neither horizontal or vertical). The following loop
* is executed exactly twice: the first pass computes the "out" point, and
* the second pass computes the "in" point. Each pass computes actually two
* points: the intersection point against the 180°W or 180°E boundary, and
* the intersection point against the 90°N or 90°S boundary. Usually one of
* those points will be out of range and the other one is selected.
*/
boolean in = false;
do {
final double meridX, meridY; // The point where the path cross the +/-180° meridian.
final double zonalX, zonalY; // The point where the path cross the +/- 90° parallel.
meridX = in ? xin : xout; meridY = dy/dx * (meridX-x1) + y1;
zonalY = in ? yin : yout; zonalX = dx/dy * (zonalY-y1) + x1;
if (abs(meridY) < abs(zonalX)*0.5) {
if (in) {
xin = meridX;
yin = meridY;
} else {
xout = meridX;
yout = meridY;
}
} else {
if (in) {
xin = zonalX;
yin = zonalY;
} else {
xout = zonalX;
yout = zonalY;
}
}
} while ((in = !in) == false);
}
final GeneralPath path = new GeneralPath(GeneralPath.WIND_EVEN_ODD, 4);
path.moveTo((float)x1 , (float)y1 );
path.lineTo((float)xout, (float)yout);
path.moveTo((float)xin , (float)yin );
path.lineTo((float)x2 , (float)y2 );
return path;
}
/**
* Returns a string representation of the current state of this calculator.
*/
@Override
public String toString() {
final Vocabulary resources = Vocabulary.getResources(null);
final TableWriter buffer = new TableWriter(null, " ");
if (coordinateReferenceSystem != null) {
buffer.write(resources.getLabel(Vocabulary.Keys.COORDINATE_REFERENCE_SYSTEM));
buffer.nextColumn();
buffer.write(coordinateReferenceSystem.getName().getCode());
buffer.nextLine();
}
if (ellipsoid != null) {
buffer.write(resources.getLabel(Vocabulary.Keys.ELLIPSOID));
buffer.nextColumn();
buffer.write(ellipsoid.getName().getCode());
buffer.nextLine();
}
final CoordinateFormat cf = new CoordinateFormat();
final Format nf = cf.getFormat(0);
if (true) {
buffer.write(resources.getLabel(Vocabulary.Keys.SOURCE_POINT));
buffer.nextColumn();
buffer.write(format(cf, long1, lat1));
buffer.nextLine();
}
if (destinationValid) {
buffer.write(resources.getLabel(Vocabulary.Keys.TARGET_POINT));
buffer.nextColumn();
buffer.write(format(cf, long2, lat2));
buffer.nextLine();
}
if (directionValid) {
buffer.write(resources.getLabel(Vocabulary.Keys.AZIMUTH));
buffer.nextColumn();
buffer.write(nf.format(new Angle(toDegrees(azimuth))));
buffer.nextLine();
}
if (directionValid) {
buffer.write(resources.getLabel(Vocabulary.Keys.ORTHODROMIC_DISTANCE));
buffer.nextColumn();
buffer.write(nf.format(distance));
if (ellipsoid != null) {
buffer.write(' ');
buffer.write(ellipsoid.getAxisUnit().toString());
}
buffer.nextLine();
}
return buffer.toString();
}
}