All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.geotoolkit.referencing.GeodeticCalculator Maven / Gradle / Ivy

/*
 *    Geotoolkit.org - An Open Source Java GIS Toolkit
 *    http://www.geotoolkit.org
 *
 *    (C) 2004-2012, Open Source Geospatial Foundation (OSGeo)
 *    (C) 2009-2012, Geomatys
 *
 *    This library is free software; you can redistribute it and/or
 *    modify it under the terms of the GNU Lesser General Public
 *    License as published by the Free Software Foundation;
 *    version 2.1 of the License.
 *
 *    This library is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *    Lesser General Public License for more details.
 *
 *    Portions of this file is adapted from Fortran code provided by NOAA.
 *    Programmed for CDC-6600 by LCDR L.Pfeifer NGS ROCKVILLE MD 18FEB75
 *    Modified for IBM SYSTEM 360 by John G.Gergen NGS ROCKVILLE MD 7507
 *    Source: ftp://ftp.ngs.noaa.gov/pub/pcsoft/for_inv.3d/source/
 */
package org.geotoolkit.referencing;

import java.awt.Shape;
import java.awt.geom.Line2D;
import java.awt.geom.Point2D;
import java.awt.geom.GeneralPath;
import java.text.Format;
import javax.measure.unit.NonSI;
import static java.lang.Math.*;

import org.opengis.referencing.datum.Datum;
import org.opengis.referencing.datum.Ellipsoid;
import org.opengis.referencing.datum.GeodeticDatum;
import org.opengis.referencing.operation.TransformException;
import org.opengis.referencing.cs.CoordinateSystemAxis;
import org.opengis.referencing.cs.CoordinateSystem;
import org.opengis.referencing.cs.AxisDirection;
import org.opengis.referencing.crs.CompoundCRS;
import org.opengis.referencing.crs.GeographicCRS;
import org.opengis.referencing.crs.CoordinateReferenceSystem;
import org.opengis.geometry.coordinate.Position;
import org.opengis.geometry.DirectPosition;

import org.geotoolkit.measure.Angle;
import org.geotoolkit.measure.Latitude;
import org.geotoolkit.measure.Longitude;
import org.geotoolkit.measure.CoordinateFormat;
import org.geotoolkit.geometry.DirectPosition2D;
import org.geotoolkit.geometry.TransformedDirectPosition;
import org.geotoolkit.referencing.datum.DefaultEllipsoid;
import org.geotoolkit.referencing.datum.DefaultGeodeticDatum;
import org.geotoolkit.referencing.crs.DefaultGeographicCRS;
import org.geotoolkit.referencing.cs.DefaultEllipsoidalCS;
import org.geotoolkit.resources.Errors;
import org.geotoolkit.resources.Vocabulary;
import org.geotoolkit.io.TableWriter;
import org.geotoolkit.util.logging.Logging;
import org.geotoolkit.util.NullArgumentException;


/**
 * Performs geodetic calculations on an {@linkplain Ellipsoid ellipsoid}. This class encapsulates
 * a generic ellipsoid and calculates the following properties:
 * 

*

    *
  • Distance and azimuth between two points.
  • *
  • Point located at a given distance and azimuth from an other point.
  • *
*

* The calculation use the following informations: *

*

    *
  • The {@linkplain #setStartingPosition starting position}, which is always considered valid. * It is initially set at (0,0) and can only be changed to another legitimate value.
  • *
  • Only one of the following: *
      *
    • The {@linkplain #setDestinationPosition destination position}, or
    • *
    • An {@linkplain #setDirection azimuth and distance}.
    • *
    * The latest one set overrides the other and determines what will be calculated.
  • *
*

* Note: This class is not thread-safe. If geodetic calculations are needed in a multi-threads * environment, create one distinct instance of {@code GeodeticCalculator} for each thread. * * @author Daniele Franzoni * @author Martin Desruisseaux (Geomatys) * @version 3.01 * * @since 2.0 * @module */ public class GeodeticCalculator { /** * Tolerance factors from the strictest ({@code TOLERANCE_0}) * to the most relax one ({@code TOLERANCE_3}). */ private static final double TOLERANCE_0 = 5.0e-15, // tol0 TOLERANCE_1 = 5.0e-14, // tol1 TOLERANCE_2 = 5.0e-13, // tt TOLERANCE_3 = 7.0e-3; // tol2 /** * Tolerance factor for assertions. It has no impact on computed values. */ private static final double TOLERANCE_CHECK = 1E-8; /** * The transform from user coordinates to geodetic coordinates used for computation, * or {@code null} if no transformations are required. */ private final TransformedDirectPosition userToGeodetic; /** * The coordinate reference system for all methods working on {@link Position} objects. * If {@code null}, will be created the first time {@link #getCoordinateReferenceSystem} * is invoked. */ private CoordinateReferenceSystem coordinateReferenceSystem; /** * The coordinate reference system for all methods working on {@link Point2D} objects. * If {@code null}, will be created the first time {@link #getGeographicCRS} is invoked. */ private GeographicCRS geographicCRS; /** * The encapsulated ellipsoid. */ private final Ellipsoid ellipsoid; /* * The semi major axis of the refereced ellipsoid. */ private final double semiMajorAxis; /* * The semi minor axis of the refereced ellipsoid. */ private final double semiMinorAxis; /* * The eccenticity squared of the refereced ellipsoid. */ private final double eccentricitySquared; /* * The maximum orthodromic distance that could be calculated onto the referenced ellipsoid. */ private final double maxOrthodromicDistance; /** * GPNARC parameters computed from the ellipsoid. */ private final double A, B, C, D, E, F; /** * GPNHRI parameters computed from the ellipsoid. * * {@code f} if the flattening of the referenced ellipsoid. {@code f2}, * {@code f3} and {@code f4} are f2, * f3 and f4 respectively. */ private final double fo, f, f2, f3, f4; /** * Parameters computed from the ellipsoid. */ private final double T1, T2, T4, T6; /** * Parameters computed from the ellipsoid. */ private final double a01, a02, a03, a21, a22, a23, a42, a43, a63; /** * The (latitude, longitude) coordinate of the first point * in radians. This point is set by {@link #setStartingGeographicPoint}. */ private double lat1, long1; /** * The (latitude, longitude) coordinate of the destination point * in radians. This point is set by {@link #setDestinationGeographicPoint}. */ private double lat2, long2; /** * The distance and azimuth (in radians) from the starting point * ({@link #long1}, {@link #lat1}) to the destination point * ({@link #long2}, {@link #lat2}). */ private double distance, azimuth; /** * Tell if the destination point is valid. * {@code false} if {@link #long2} and {@link #lat2} need to be computed. */ private boolean destinationValid; /** * Tell if the azimuth and the distance are valids. * {@code false} if {@link #distance} and {@link #azimuth} need to be computed. */ private boolean directionValid; /** * {@code true} if the source and destination points are almost antipodal. If {@code true}, * then the distance and direction computed by {@link #computeDirection} are likely to be * inaccurate. */ private boolean antipodal; /** * Constructs a new geodetic calculator associated with the WGS84 ellipsoid. */ public GeodeticCalculator() { this(DefaultEllipsoid.WGS84); } /** * Constructs a new geodetic calculator associated with the specified ellipsoid. * All calculations done by the new instance are referenced to this ellipsoid. * * @param ellipsoid The ellipsoid onto which calculates distances and azimuths. */ public GeodeticCalculator(final Ellipsoid ellipsoid) { this(ellipsoid, null); } /** * Constructs a new geodetic calculator expecting coordinates in the supplied CRS. * The ellipsoid will be inferred from the CRS. * * @param crs The reference system for the {@link Position} objects. * * @since 2.2 */ public GeodeticCalculator(final CoordinateReferenceSystem crs) { this(CRS.getEllipsoid(crs), crs); } /** * For internal use by public constructors only. */ private GeodeticCalculator(final Ellipsoid ellipsoid, final CoordinateReferenceSystem crs) { if (ellipsoid == null) { throw new NullArgumentException(Errors.format(Errors.Keys.NULL_ARGUMENT_$1, "ellipsoid")); } this.ellipsoid = ellipsoid; this.semiMajorAxis = ellipsoid.getSemiMajorAxis(); this.semiMinorAxis = ellipsoid.getSemiMinorAxis(); if (crs != null) { coordinateReferenceSystem = crs; geographicCRS = getGeographicCRS(crs); /* * Note: there is no need to set Hints.LENIENT_DATUM_SHIFT to Boolean.TRUE here since * the target CRS computed by our internal getGeographicCRS(crs) method should * returns a CRS using the same datum than the specified CRS. If the factory * fails with a "Bursa-Wolf parameters required" error message, then we probably * have a bug somewhere. */ userToGeodetic = new TransformedDirectPosition(crs, geographicCRS, null); } else { userToGeodetic = null; } /* calculation of GPNHRI parameters */ f = (semiMajorAxis-semiMinorAxis) / semiMajorAxis; fo = 1.0 - f; f2 = f*f; f3 = f*f2; f4 = f*f3; eccentricitySquared = f * (2.0-f); /* Calculation of GNPARC parameters */ final double E2 = eccentricitySquared; final double E4 = E2*E2; final double E6 = E4*E2; final double E8 = E6*E2; final double EX = E8*E2; A = 1.0+0.75*E2+0.703125*E4+0.68359375 *E6+0.67291259765625*E8+0.6661834716796875 *EX; B = 0.75*E2+0.9375 *E4+1.025390625*E6+1.07666015625 *E8+1.1103057861328125 *EX; C = 0.234375*E4+0.41015625 *E6+0.538330078125 *E8+0.63446044921875 *EX; D = 0.068359375*E6+0.15380859375 *E8+0.23792266845703125*EX; E = 0.01922607421875*E8+0.0528717041015625 *EX; F = 0.00528717041015625*EX; maxOrthodromicDistance = semiMajorAxis * (1.0 - E2) * PI * A - 1.0; T1 = 1.0; T2 = -0.25*f*(1.0 + f + f2); T4 = 0.1875 * f2 * (1.0+2.25*f); T6 = 0.1953125 * f3; final double a = f3*(1.0+2.25*f); a01 = -f2*(1.0+f+f2)/4.0; a02 = 0.1875*a; a03 = -0.1953125*f4; a21 = -a01; a22 = -0.25*a; a23 = 0.29296875*f4; a42 = 0.03125*a; a43 = 0.05859375*f4; a63 = 5.0*f4/768.0; } /////////////////////////////////////////////////////////// //////// //////// //////// H E L P E R M E T H O D S //////// //////// //////// /////////////////////////////////////////////////////////// /** * Returns the first two-dimensional geographic CRS using standard axis, creating one if needed. */ private static GeographicCRS getGeographicCRS(final CoordinateReferenceSystem crs) { if (crs instanceof GeographicCRS) { final CoordinateSystem cs = crs.getCoordinateSystem(); if (cs.getDimension() == 2 && isStandard(cs.getAxis(0), AxisDirection.EAST) && isStandard(cs.getAxis(1), AxisDirection.NORTH)) { return (GeographicCRS) crs; } } final Datum datum = CRS.getDatum(crs); if (datum instanceof GeodeticDatum) { return new DefaultGeographicCRS("Geodetic", (GeodeticDatum) datum, DefaultEllipsoidalCS.GEODETIC_2D); } if (crs instanceof CompoundCRS) { for (final CoordinateReferenceSystem component : ((CompoundCRS) crs).getComponents()) { final GeographicCRS candidate = getGeographicCRS(component); if (candidate != null) { return candidate; } } } throw new IllegalArgumentException(Errors.format(Errors.Keys.ILLEGAL_COORDINATE_REFERENCE_SYSTEM)); } /** * Returns {@code true} if the specified axis is oriented toward the specified direction and * uses decimal degrees units. */ private static boolean isStandard(final CoordinateSystemAxis axis, final AxisDirection direction) { return direction.equals(axis.getDirection()) && NonSI.DEGREE_ANGLE.equals(axis.getUnit()); } /** * Returns an angle between -{@linkplain Math#PI PI} and {@linkplain Math#PI PI} * equivalent to the specified angle in radians. * * @param alpha An angle value in radians. * @return The angle between between -{@linkplain Math#PI PI} and {@linkplain Math#PI PI}. */ private static double castToAngleRange(final double alpha) { return alpha - (2*PI) * floor(alpha / (2*PI) + 0.5); } /** * Checks the latidude validity. The argument {@code latidude} should be * greater or equal than -90 degrees and lower or equals than +90 degrees. As * a convenience, this method returns the latitude in radians. * * @param latitude The latitude value in decimal degrees. * @return The latitude value in radians. * @throws IllegalArgumentException if {@code latitude} is not between -90 and +90 degrees. */ private static double checkLatitude(final double latitude) throws IllegalArgumentException { if (latitude >= Latitude.MIN_VALUE && latitude <= Latitude.MAX_VALUE) { return toRadians(latitude); } throw new IllegalArgumentException(Errors.format( Errors.Keys.LATITUDE_OUT_OF_RANGE_$1, new Latitude(latitude))); } /** * Checks the longitude validity. The argument {@code longitude} should be * greater or equal than -180 degrees and lower or equals than +180 degrees. As * a convenience, this method returns the longitude in radians. * * @param longitude The longitude value in decimal degrees. * @return The longitude value in radians. * @throws IllegalArgumentException if {@code longitude} is not between -180 and +180 degrees. */ private static double checkLongitude(final double longitude) throws IllegalArgumentException { if (longitude >= Longitude.MIN_VALUE && longitude <= Longitude.MAX_VALUE) { return toRadians(longitude); } throw new IllegalArgumentException(Errors.format( Errors.Keys.LONGITUDE_OUT_OF_RANGE_$1, new Longitude(longitude))); } /** * Checks the azimuth validity. The argument {@code azimuth} should be * greater or equal than -180 degrees and lower or equals than +180 degrees. * As a convenience, this method returns the azimuth in radians. * * @param azimuth The azimuth value in decimal degrees. * @return The azimuth value in radians. * @throws IllegalArgumentException if {@code azimuth} is not between -180 and +180 degrees. */ private static double checkAzimuth(final double azimuth) throws IllegalArgumentException { if (azimuth >= -180.0 && azimuth <= 180.0) { return toRadians(azimuth); } throw new IllegalArgumentException(Errors.format( Errors.Keys.AZIMUTH_OUT_OF_RANGE_$1, new Longitude(azimuth))); } /** * Checks the orthodromic distance validity. Arguments {@code orthodromicDistance} * should be greater or equal than 0 and lower or equals than the maximum orthodromic distance. * * @param distance The orthodromic distance value. * @throws IllegalArgumentException if {@code orthodromic distance} is not between * 0 and the maximum orthodromic distance. */ private void checkOrthodromicDistance(final double distance) throws IllegalArgumentException { if (!(distance >= 0.0 && distance <= maxOrthodromicDistance)) { throw new IllegalArgumentException(Errors.format(Errors.Keys.DISTANCE_OUT_OF_RANGE_$4, distance, 0.0, maxOrthodromicDistance, ellipsoid.getAxisUnit())); } } /** * Checks the number of verteces in a curve. Arguments {@code numberOfPoints} * should be not negative. * * @param numberOfPonits The number of verteces in a curve. * @throws IllegalArgumentException if {@code numberOfVerteces} is negative. */ private static void checkNumberOfPoints(final int numberOfPoints) throws IllegalArgumentException { if (numberOfPoints < 0) { throw new IllegalArgumentException(Errors.format(Errors.Keys.ILLEGAL_ARGUMENT_$2, "numberOfPoints", numberOfPoints)); } } /** * Returns a localized "No convergence" error message. The error message * includes informations about starting and destination points. */ private String getNoConvergenceErrorMessage() { final CoordinateFormat cf = new CoordinateFormat(); return Errors.format(Errors.Keys.NO_CONVERGENCE_$2, format(cf, long1, lat1), format(cf, long2, lat2)); } /** * Format the specified coordinates using the specified formatter, which should be an instance * of {@link CoordinateFormat}. */ private static String format(final Format cf, final double longitude, final double latitude) { return cf.format(new DirectPosition2D(toDegrees(longitude), toDegrees(latitude))); } /////////////////////////////////////////////////////////////// //////// //////// //////// G E O D E T I C M E T H O D S //////// //////// //////// /////////////////////////////////////////////////////////////// /** * Returns the coordinate reference system for all methods working on {@link Position} objects. * This is the CRS specified at {@linkplain #GeodeticCalculator(CoordinateReferenceSystem) * construction time}. * * @return The CRS for all {@link Position}s. * * @since 2.2 */ public CoordinateReferenceSystem getCoordinateReferenceSystem() { if (coordinateReferenceSystem == null) { coordinateReferenceSystem = getGeographicCRS(); } return coordinateReferenceSystem; } /** * Returns the geographic coordinate reference system for all methods working * on {@link Point2D} objects. This is inferred from the CRS specified at * {@linkplain #GeodeticCalculator(CoordinateReferenceSystem) construction time}. * * @return The CRS for {@link Point2D}s. * * @since 2.3 */ public GeographicCRS getGeographicCRS() { if (geographicCRS == null) { final String name = Vocabulary.format(Vocabulary.Keys.GEODETIC_2D); geographicCRS = new DefaultGeographicCRS(name, new DefaultGeodeticDatum( name, getEllipsoid()), DefaultEllipsoidalCS.GEODETIC_2D); } return geographicCRS; } /** * Returns the referenced ellipsoid. * * @return The referenced ellipsoid. */ public Ellipsoid getEllipsoid() { return ellipsoid; } /** * Set the starting point in geographic coordinates. * The {@linkplain #getAzimuth() azimuth}, * the {@linkplain #getOrthodromicDistance() orthodromic distance} and * the {@linkplain #getDestinationGeographicPoint() destination point} * are discarded. They will need to be specified again. * * @param longitude The longitude in decimal degrees between -180 and +180° * @param latitude The latitude in decimal degrees between -90 and +90° * @throws IllegalArgumentException if the longitude or the latitude is out of bounds. * * @since 2.3 */ public void setStartingGeographicPoint(double longitude, double latitude) throws IllegalArgumentException { // Check first in case an exception is raised // (in other words, we change all or nothing). longitude = checkLongitude(longitude); latitude = checkLatitude (latitude); // Check passed. Now performs the changes in this object. long1 = longitude; lat1 = latitude; destinationValid = false; directionValid = false; } /** * Set the starting point in geographic coordinates. The x and y * coordinates must be the longitude and latitude in decimal degrees, respectively. * * This is a convenience method for * {@linkplain #setStartingGeographicPoint(double,double) * setStartingGeographicPoint}(x,y). * * @param point The starting point. * @throws IllegalArgumentException if the longitude or the latitude is out of bounds. * * @since 2.3 */ public void setStartingGeographicPoint(final Point2D point) throws IllegalArgumentException { setStartingGeographicPoint(point.getX(), point.getY()); } /** * Set the starting position in user coordinates, which doesn't need to be geographic. * The coordinate reference system is the one specified to the * {@linkplain #GeodeticCalculator(CoordinateReferenceSystem) constructor}. * * @param position The position in user coordinate reference system. * @throws TransformException if the position can't be transformed. * * @since 2.3 */ public void setStartingPosition(final Position position) throws TransformException { DirectPosition p = position.getDirectPosition(); if (userToGeodetic != null) { userToGeodetic.transform(p); p = userToGeodetic; } setStartingGeographicPoint(p.getOrdinate(0), p.getOrdinate(1)); } /** * Returns the starting point in geographic coordinates. The x and y * coordinates are the longitude and latitude in decimal degrees, respectively. If the * starting point has never been set, then the default value is (0,0). * * @return The starting point in geographic coordinates. * * @since 2.3 */ public Point2D getStartingGeographicPoint() { return new Point2D.Double(toDegrees(long1), toDegrees(lat1)); } /** * Returns the starting position in user coordinates, which doesn't need to be geographic. * The coordinate reference system is the one specified to the * {@linkplain #GeodeticCalculator(CoordinateReferenceSystem) constructor}. * * @return The starting position in user CRS. * @throws TransformException if the position can't be transformed to user coordinates. * * @since 2.3 */ public DirectPosition getStartingPosition() throws TransformException { DirectPosition position = userToGeodetic; if (position == null) { position = new DirectPosition2D(); } position.setOrdinate(0, toDegrees(long1)); position.setOrdinate(1, toDegrees( lat1)); if (userToGeodetic != null) { position = userToGeodetic.inverseTransform(); } return position; } /** * Set the destination point in geographic coordinates. The azimuth and distance values * will be updated as a side effect of this call. They will be recomputed the next time * {@link #getAzimuth()} or {@link #getOrthodromicDistance()} are invoked. * * @param longitude The longitude in decimal degrees between -180 and +180° * @param latitude The latgitude in decimal degrees between -90 and +90° * @throws IllegalArgumentException if the longitude or the latitude is out of bounds. * * @since 2.3 */ public void setDestinationGeographicPoint(double longitude, double latitude) throws IllegalArgumentException { // Check first in case an exception is raised // (in other words, we change all or nothing). longitude = checkLongitude(longitude); latitude = checkLatitude (latitude); // Check passed. Now performs the changes in this object. long2 = longitude; lat2 = latitude; destinationValid = true; directionValid = false; } /** * Set the destination point in geographic coordinates. The x and y * coordinates must be the longitude and latitude in decimal degrees, respectively. * * This is a convenience method for * {@linkplain #setDestinationGeographicPoint(double,double) * setDestinationGeographicPoint}(x,y). * * @param point The destination point. * @throws IllegalArgumentException if the longitude or the latitude is out of bounds. * * @since 2.3 */ public void setDestinationGeographicPoint(final Point2D point) throws IllegalArgumentException { setDestinationGeographicPoint(point.getX(), point.getY()); } /** * Set the destination position in user coordinates, which doesn't need to be geographic. * The coordinate reference system is the one specified to the * {@linkplain #GeodeticCalculator(CoordinateReferenceSystem) constructor}. * * @param position The position in user coordinate reference system. * @throws TransformException if the position can't be transformed. * * @since 2.2 */ public void setDestinationPosition(final Position position) throws TransformException { DirectPosition p = position.getDirectPosition(); if (userToGeodetic != null) { userToGeodetic.transform(p); p = userToGeodetic; } setDestinationGeographicPoint(p.getOrdinate(0), p.getOrdinate(1)); } /** * Returns the destination point. This method returns the point set by the last * call to a {@linkplain #setDestinationGeographicPoint(double,double) * setDestinationGeographicPoint}(...) * method, except if * {@linkplain #setDirection(double,double) setDirection}(...) has been * invoked after. In this later case, the destination point will be computed from the * {@linkplain #getStartingGeographicPoint starting point} to the azimuth and distance * specified. * * @return The destination point. The x and y coordinates * are the longitude and latitude in decimal degrees, respectively. * @throws IllegalStateException if the azimuth and the distance have not been set. * * @since 2.3 */ public Point2D getDestinationGeographicPoint() throws IllegalStateException { if (!destinationValid) { computeDestinationPoint(); } return new Point2D.Double(toDegrees(long2), toDegrees(lat2)); } /** * Returns the destination position in user coordinates, which doesn't need to be geographic. * The coordinate reference system is the one specified to the * {@linkplain #GeodeticCalculator(CoordinateReferenceSystem) constructor}. * * @return The destination position in user CRS. * @throws TransformException if the position can't be transformed to user coordinates. * * @since 2.2 */ public DirectPosition getDestinationPosition() throws TransformException { if (!destinationValid) { computeDestinationPoint(); } DirectPosition position = userToGeodetic; if (position == null) { position = new DirectPosition2D(); } position.setOrdinate(0, toDegrees(long2)); position.setOrdinate(1, toDegrees( lat2)); if (userToGeodetic != null) { position = userToGeodetic.inverseTransform(); } return position; } /** * Set the azimuth and the distance from the {@linkplain #getStartingGeographicPoint * starting point}. The destination point will be updated as a side effect of this call. * It will be recomputed the next time {@link #getDestinationGeographicPoint()} is invoked. * * @param azimuth The azimuth in decimal degrees from -180° to 180°. * @param distance The orthodromic distance in the same units as the * {@linkplain #getEllipsoid ellipsoid} axis. * @throws IllegalArgumentException if the azimuth or the distance is out of bounds. * * @see #getAzimuth * @see #getOrthodromicDistance */ public void setDirection(double azimuth, final double distance) throws IllegalArgumentException { // Check first in case an exception is raised // (in other words, we change all or nothing). azimuth = checkAzimuth(azimuth); checkOrthodromicDistance(distance); // Check passed. Now performs the changes in this object. this.azimuth = azimuth; this.distance = distance; destinationValid = false; directionValid = true; } /** * Returns the azimuth. This method returns the value set by the last call to * {@linkplain #setDirection(double,double) setDirection}(azimuth,distance), * except if {@linkplain #setDestinationGeographicPoint(double,double) * setDestinationGeographicPoint}(...) has been invoked after. In this later case, the * azimuth will be computed from the {@linkplain #getStartingGeographicPoint starting point} * to the destination point. * * @return The azimuth, in decimal degrees from -180° to +180°. * @throws IllegalStateException if the destination point has not been set. * * @todo Current implementation will provides an inaccurate value for antipodal points. For * now a warning is logged in such case. In a future version (if we have volunter time) * we should provides a solution (search Internet for "azimuth antipodal * points"). */ public double getAzimuth() throws IllegalStateException { if (!directionValid) { computeDirection(); if (antipodal) { Logging.getLogger(GeodeticCalculator.class).warning( "Azimuth is inaccurate for antipodal points."); } } return toDegrees(azimuth); } /** * Returns the orthodromic distance. This method returns the value set by the last call to * {@linkplain #setDirection(double,double) setDirection}(azimuth,distance), * except if {@linkplain #setDestinationGeographicPoint(double,double) * setDestinationGeographicPoint}(...) has been invoked after. In this later case, the * distance will be computed from the {@linkplain #getStartingGeographicPoint starting point} * to the destination point. * * @return The orthodromic distance, in the same units as the * {@linkplain #getEllipsoid ellipsoid} axis. * @throws IllegalStateException if the destination point has not been set. */ public double getOrthodromicDistance() throws IllegalStateException { if (!directionValid) { computeDirection(); if (antipodal) { // If we are at antipodes, DefaultEllipsoid will provides a better estimation. if (ellipsoid instanceof DefaultEllipsoid) { return ((DefaultEllipsoid) ellipsoid).orthodromicDistance( toDegrees(long1), toDegrees(lat1), toDegrees(long2), toDegrees(lat2)); } } else { assert checkOrthodromicDistance() : this; } } return distance; } /** * Computes the orthodromic distance using the algorithm implemented in the Geotk's * ellipsoid class (if available), and check if the error is smaller than some * tolerance error. */ private boolean checkOrthodromicDistance() { if (ellipsoid instanceof DefaultEllipsoid) { double check; final DefaultEllipsoid ellipsoid = (DefaultEllipsoid) this.ellipsoid; check = ellipsoid.orthodromicDistance(toDegrees(long1), toDegrees(lat1), toDegrees(long2), toDegrees(lat2)); check = abs(distance - check); return check <= (distance+1) * TOLERANCE_CHECK; } return true; } /** * Computes the destination point from the {@linkplain #getStartingGeographicPoint starting * point}, the {@linkplain #getAzimuth azimuth} and the {@linkplain #getOrthodromicDistance * orthodromic distance}. * * @throws IllegalStateException if the azimuth and the distance have not been set. * * @see #getDestinationGeographicPoint */ private void computeDestinationPoint() throws IllegalStateException { if (!directionValid) { throw new IllegalStateException(Errors.format(Errors.Keys.DIRECTION_NOT_SET)); } // Protect internal variables from changes final double lat1 = this.lat1; final double long1 = this.long1; final double azimuth = this.azimuth; final double distance = this.distance; /* * Solution of the geodetic direct problem after T.Vincenty. * Modified Rainsford's method with Helmert's elliptical terms. * Effective in any azimuth and at any distance short of antipodal. * * Latitudes and longitudes in radians positive North and East. * Forward azimuths at both points returned in radians from North. * * Programmed for CDC-6600 by LCDR L.Pfeifer NGS ROCKVILLE MD 18FEB75 * Modified for IBM SYSTEM 360 by John G.Gergen NGS ROCKVILLE MD 7507 * Ported from Fortran to Java by Daniele Franzoni. * * Source: ftp://ftp.ngs.noaa.gov/pub/pcsoft/for_inv.3d/source/forward.for * subroutine DIRECT1 */ double tu = fo*sin(lat1) / cos(lat1); double sf = sin(azimuth); double cf = cos(azimuth); double baz = (cf != 0) ? atan2(tu, cf) * 2.0 : 0; double cu = 1 / sqrt(tu*tu + 1.0); double su = tu*cu; double sa = cu*sf; double c2a = 1.0 - sa*sa; double x = sqrt((1.0/fo/fo - 1) * c2a + 1.0) + 1.0; x = (x - 2.0) / x; double c = 1.0 - x; c = (x*x / 4.0 + 1.0) / c; double d = (0.375 * x*x - 1.0) * x; tu = distance / fo / semiMajorAxis / c; double y = tu; double sy, cy, cz, e; do { sy = sin(y); cy = cos(y); cz = cos(baz + y); e = cz*cz*2.0 - 1.0; c = y; x = e*cy; y = e + e - 1.0; y = (((sy*sy*4.0 - 3.0) * y*cz*d/6.0 + x) * d/4.0 - cz) * sy*d + tu; } while (abs(y-c) > TOLERANCE_1); baz = cu*cy*cf - su*sy; c = fo * hypot(sa, baz); d = su*cy + cu*sy*cf; lat2 = atan2(d,c); c = cu*cy - su*sy*cf; x = atan2(sy*sf, c); c = ((-3.0 * c2a + 4.0) * f + 4.0) * c2a * f / 16.0; d = ((e * cy * c + cz) * sy * c + y) * sa; long2 = long1+x - (1.0-c)*d*f; long2 = castToAngleRange(long2); destinationValid = true; } /** * Calculates the meridian arc length between two points in the same meridian * in the referenced ellipsoid. * * @param latitude1 The latitude of the first point (in decimal degrees). * @param latitude2 The latitude of the second point (in decimal degrees). * @return Returned the meridian arc length between latitude1 and latitude2 */ public double getMeridianArcLength(final double latitude1, final double latitude2) { return getMeridianArcLengthRadians(checkLatitude(latitude1), checkLatitude(latitude2)); } /** * Calculates the meridian arc length between two points in the same meridian * in the referenced ellipsoid. * * @param φ1 The latitude of the first point (in radians). * @param φ2 The latitude of the second point (in radians). * @return Returned the meridian arc length between φ1 and φ2 */ private double getMeridianArcLengthRadians(final double φ1, final double φ2) { /* * Latitudes φ1 and φ2 in radians positive North and East. * Forward azimuths at both points returned in radians from North. * * Source: ftp://ftp.ngs.noaa.gov/pub/pcsoft/for_inv.3d/source/inverse.for * subroutine GPNARC * version 200005.26 * written by Robert (Sid) Safford * * Ported from Fortran to Java by Daniele Franzoni. */ double s1 = abs(φ1); double s2 = abs(φ2); double da = (φ2-φ1); // Check for a 90 degree lookup if (s1 > TOLERANCE_0 || s2 <= (PI/2 - TOLERANCE_0) || s2 >= (PI/2 + TOLERANCE_0)) { final double db = sin(φ2 * 2.0) - sin(φ1 * 2.0); final double dc = sin(φ2 * 4.0) - sin(φ1 * 4.0); final double dd = sin(φ2 * 6.0) - sin(φ1 * 6.0); final double de = sin(φ2 * 8.0) - sin(φ1 * 8.0); final double df = sin(φ2 * 10.0) - sin(φ1 * 10.0); // Compute the S2 part of the series expansion s2 = -db*B/2.0 + dc*C/4.0 - dd*D/6.0 + de*E/8.0 - df*F/10.0; } // Compute the S1 part of the series expansion s1 = da * A; // Compute the arc length return abs(semiMajorAxis * (1.0 - eccentricitySquared) * (s1 + s2)); } /** * Computes the azimuth and orthodromic distance from the * {@linkplain #getStartingGeographicPoint starting point} and the * {@linkplain #getDestinationGeographicPoint destination point}. * * @throws IllegalStateException if the destination point has not been set. * * @see #getAzimuth * @see #getOrthodromicDistance */ private void computeDirection() throws IllegalStateException { if (!destinationValid) { throw new IllegalStateException(Errors.format(Errors.Keys.DESTINATION_NOT_SET)); } // Protect internal variables from change. final double long1 = this.long1; final double lat1 = this.lat1; final double long2 = this.long2; final double lat2 = this.lat2; /* * Solution of the geodetic inverse problem after T.Vincenty. * Modified Rainsford's method with Helmert's elliptical terms. * Effective in any azimuth and at any distance short of antipodal. * * Latitudes and longitudes in radians positive North and East. * Forward azimuths at both points returned in radians from North. * * Programmed for CDC-6600 by LCDR L.Pfeifer NGS ROCKVILLE MD 18FEB75 * Modified for IBM SYSTEM 360 by John G.Gergen NGS ROCKVILLE MD 7507 * Ported from Fortran to Java by Daniele Franzoni. * * Source: ftp://ftp.ngs.noaa.gov/pub/pcsoft/for_inv.3d/source/inverse.for * subroutine GPNHRI * version 200208.09 * written by robert (sid) safford */ final double dlon = castToAngleRange(long2 - long1); final double ss = abs(dlon); if (ss < TOLERANCE_1) { distance = getMeridianArcLengthRadians(lat1, lat2); azimuth = (lat2 > lat1) ? 0.0 : PI; directionValid = true; antipodal = false; return; } antipodal = (PI - ss < 2*TOLERANCE_3) && (abs(lat1 + lat2) < 2*TOLERANCE_3); /* * Computes the limit in longitude (alimit), it is equal * to twice the distance from the equator to the pole, * as measured along the equator. */ // tests for antinodal difference final double ESQP = eccentricitySquared / (1.0-eccentricitySquared); final double alimit = PI * fo; if (ss >= alimit && lat1 < TOLERANCE_3 && lat1 > -TOLERANCE_3 && lat2 < TOLERANCE_3 && lat2 > -TOLERANCE_3) { // Computes an approximate AZ final double cons = (PI - ss) / (PI * f); double az = asin(cons); double az_temp, s, ao; int iter = 0; do { if (++iter > 8) { throw new ArithmeticException(getNoConvergenceErrorMessage()); } s = cos(az); final double c2 = s*s; // Compute new AO ao = T1 + T2*c2 + T4*c2*c2 + T6*c2*c2*c2; final double cs = cons / ao; s = asin(cs); az_temp = az; az = s; } while (abs(s - az_temp) >= TOLERANCE_2); final double az1 = (dlon < 0.0) ? 2.0*PI - s : s; azimuth = castToAngleRange(az1); s = cos(az1); // Equatorial - geodesic(S-s) SMS final double u2 = ESQP*s*s; final double u4 = u2*u2; final double u6 = u4*u2; final double u8 = u6*u2; final double bo = 1.0 + 0.25 *u2 + 0.046875 *u4 + 0.01953125 *u6 + -0.01068115234375*u8; s = sin(az1); final double sms = semiMajorAxis*PI*(1.0 - f*abs(s)*ao - bo*fo); distance = semiMajorAxis*ss - sms; directionValid = true; return; } // the reduced latitudes final double u1 = atan(fo*sin(lat1) / cos(lat1)); final double u2 = atan(fo*sin(lat2) / cos(lat2)); final double su1 = sin(u1); final double cu1 = cos(u1); final double su2 = sin(u2); final double cu2 = cos(u2); double xy, w, q2, q4, q6, r2, r3, sig, ssig, slon, clon, sinalf, ab=dlon; int kcount = 0; do { if (++kcount > 12) { throw new ArithmeticException(getNoConvergenceErrorMessage()); } clon = cos(ab); slon = sin(ab); final double csig = su1*su2 + cu1*cu2*clon; ssig = hypot(slon*cu2, su2*cu1 - su1*cu2*clon); sig = atan2(ssig, csig); sinalf = cu1*cu2*slon/ssig; w = (1.0 - sinalf*sinalf); final double t4 = w*w; final double t6 = w*t4; // the coefficents of type a final double ao = f+a01*w+a02*t4+a03*t6; final double a2 = a21*w+a22*t4+a23*t6; final double a4 = a42*t4+a43*t6; final double a6 = a63*t6; // the multiple angle functions double qo = 0.0; if (w > TOLERANCE_0) { qo = -2.0*su1*su2/w; } q2 = csig + qo; q4 = 2.0*q2*q2 - 1.0; q6 = q2*(4.0*q2*q2 - 3.0); r2 = 2.0*ssig*csig; r3 = ssig*(3.0 - 4.0*ssig*ssig); // the longitude difference final double s = sinalf*(ao*sig + a2*ssig*q2 + a4*r2*q4 + a6*r3*q6); double xz = dlon+s; xy = abs(xz - ab); ab = dlon+s; } while (xy >= TOLERANCE_1); final double z = ESQP*w; final double bo = 1.0 + z*( 1.0/4.0 + z*(-3.0/ 64.0 + z*( 5.0/256.0 - z*(175.0/16384.0)))); final double b2 = z*(-1.0/4.0 + z*( 1.0/ 16.0 + z*(-15.0/512.0 + z*( 35.0/ 2048.0)))); final double b4 = z*z*(-1.0/ 128.0 + z*( 3.0/512.0 - z*( 35.0/ 8192.0))); final double b6 = z*z*z*(-1.0/1536.0 + z*( 5.0/ 6144.0)); // The distance in ellispoid axis units. distance = semiMinorAxis * (bo*sig + b2*ssig*q2 + b4*r2*q4 + b6*r3*q6); double az1 = (dlon < 0) ? PI*1.5 : PI/2; // now compute the az1 & az2 for latitudes not on the equator if ((abs(su1) >= TOLERANCE_0) || (abs(su2) >= TOLERANCE_0)) { final double tana1 = slon*cu2 / (su2*cu1 - clon*su1*cu2); final double sina1 = sinalf/cu1; // azimuths from north,longitudes positive east az1 = atan2(sina1, sina1/tana1); } azimuth = castToAngleRange(az1); directionValid = true; } /** * Calculates the geodetic curve between two points in the referenced ellipsoid. * A curve in the ellipsoid is a path which points contain the longitude and latitude * of the points in the geodetic curve. The geodetic curve is computed from the * {@linkplain #getStartingGeographicPoint starting point} to the * {@linkplain #getDestinationGeographicPoint destination point}. * * @param numberOfPoints The number of vertex in the geodetic curve. * NOTE: This argument is only a hint and may be ignored * in future version (if we compute a real curve rather than a list of line * segments). * @return The path that represents the geodetic curve from the * {@linkplain #getStartingGeographicPoint starting point} to the * {@linkplain #getDestinationGeographicPoint destination point}. * * @todo We should check for cases where the path cross the 90°N, 90°S, 90°E or 90°W boundaries. */ public Shape getGeodeticCurve(final int numberOfPoints) { checkNumberOfPoints(numberOfPoints); if (!directionValid) { computeDirection(); } if (!destinationValid) { computeDestinationPoint(); } final double long2 = this.long2; final double lat2 = this.lat2; final double distance = this.distance; final double deltaDistance = distance / numberOfPoints; final GeneralPath path = new GeneralPath(GeneralPath.WIND_EVEN_ODD, numberOfPoints+1); path.moveTo((float) toDegrees(long1), (float) toDegrees(lat1)); for (int i=1; ix1) ? Boolean.valueOf(azimuth >= 0) : (x2y1) ? Boolean.valueOf(azimuth >= -90 && azimuth <= +90) : (y2= +90) : null; assert xDirect==null || yDirect==null || xDirect.equals(yDirect) : this; if (!Boolean.FALSE.equals(xDirect) && !Boolean.FALSE.equals(yDirect)) { return new Line2D.Double(x1, y1, x2, y2); } if (Boolean.FALSE.equals(yDirect)) { /* * Crossing North or South pole is more complicated than what we do for now: If we * follow the 0° longitude toward North, then we have to follow the 180° longitude * from North to South pole and follow the 0° longitude again toward North up to * the destination point. */ throw new UnsupportedOperationException("Crossing pole is not yet implemented"); } /* * The azimuth is heading in the opposite direction of the path from P1 to P2. Computes * the intersection points at the 90°N / 90°S boundaries, or the 180°E / 180°W boundaries. * (xout,yout) is the point where the path goes out (initialized to the corner where the * azimuth is heading); (xin,yin) is the point where the path come back in the opposite * hemisphere. */ double xout = (x2 >= x1) ? -180 : +180; double yout = (y2 >= y1) ? -90 : +90; double xin = -xout; double yin = -yout; final double dx = x2-x1; final double dy = y2-y1; if (dx == 0) { xin = xout = x1; // Vertical line. } else if (dy == 0) { yin = yout = y1; // Horizontal line. } else { /* * The path is diagonal (neither horizontal or vertical). The following loop * is executed exactly twice: the first pass computes the "out" point, and * the second pass computes the "in" point. Each pass computes actually two * points: the intersection point against the 180°W or 180°E boundary, and * the intersection point against the 90°N or 90°S boundary. Usually one of * those points will be out of range and the other one is selected. */ boolean in = false; do { final double meridX, meridY; // The point where the path cross the +/-180° meridian. final double zonalX, zonalY; // The point where the path cross the +/- 90° parallel. meridX = in ? xin : xout; meridY = dy/dx * (meridX-x1) + y1; zonalY = in ? yin : yout; zonalX = dx/dy * (zonalY-y1) + x1; if (abs(meridY) < abs(zonalX)*0.5) { if (in) { xin = meridX; yin = meridY; } else { xout = meridX; yout = meridY; } } else { if (in) { xin = zonalX; yin = zonalY; } else { xout = zonalX; yout = zonalY; } } } while ((in = !in) == false); } final GeneralPath path = new GeneralPath(GeneralPath.WIND_EVEN_ODD, 4); path.moveTo((float)x1 , (float)y1 ); path.lineTo((float)xout, (float)yout); path.moveTo((float)xin , (float)yin ); path.lineTo((float)x2 , (float)y2 ); return path; } /** * Returns a string representation of the current state of this calculator. */ @Override public String toString() { final Vocabulary resources = Vocabulary.getResources(null); final TableWriter buffer = new TableWriter(null, " "); if (coordinateReferenceSystem != null) { buffer.write(resources.getLabel(Vocabulary.Keys.COORDINATE_REFERENCE_SYSTEM)); buffer.nextColumn(); buffer.write(coordinateReferenceSystem.getName().getCode()); buffer.nextLine(); } if (ellipsoid != null) { buffer.write(resources.getLabel(Vocabulary.Keys.ELLIPSOID)); buffer.nextColumn(); buffer.write(ellipsoid.getName().getCode()); buffer.nextLine(); } final CoordinateFormat cf = new CoordinateFormat(); final Format nf = cf.getFormat(0); if (true) { buffer.write(resources.getLabel(Vocabulary.Keys.SOURCE_POINT)); buffer.nextColumn(); buffer.write(format(cf, long1, lat1)); buffer.nextLine(); } if (destinationValid) { buffer.write(resources.getLabel(Vocabulary.Keys.TARGET_POINT)); buffer.nextColumn(); buffer.write(format(cf, long2, lat2)); buffer.nextLine(); } if (directionValid) { buffer.write(resources.getLabel(Vocabulary.Keys.AZIMUTH)); buffer.nextColumn(); buffer.write(nf.format(new Angle(toDegrees(azimuth)))); buffer.nextLine(); } if (directionValid) { buffer.write(resources.getLabel(Vocabulary.Keys.ORTHODROMIC_DISTANCE)); buffer.nextColumn(); buffer.write(nf.format(distance)); if (ellipsoid != null) { buffer.write(' '); buffer.write(ellipsoid.getAxisUnit().toString()); } buffer.nextLine(); } return buffer.toString(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy