org.geotoolkit.referencing.operation.projection.CassiniOrMercator Maven / Gradle / Ivy
/*
* Geotoolkit.org - An Open Source Java GIS Toolkit
* http://www.geotoolkit.org
*
* (C) 1999-2012, Open Source Geospatial Foundation (OSGeo)
* (C) 2009-2012, Geomatys
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* This package contains formulas from the PROJ package of USGS.
* USGS's work is fully acknowledged here. This derived work has
* been relicensed under LGPL with Frank Warmerdam's permission.
*/
package org.geotoolkit.referencing.operation.projection;
import java.awt.geom.AffineTransform;
import net.jcip.annotations.Immutable;
import org.geotoolkit.resources.Errors;
import static java.lang.Math.*;
/**
* The base class for Cassini-Solder and Transverse Mercator projections.
*
* @author Gerald Evenden (USGS)
* @author André Gosselin (MPO)
* @author Martin Desruisseaux (MPO, IRD, Geomatys)
* @author Rueben Schulz (UBC)
* @author Rémi Maréchal (Geomatys)
* @version 3.18
*
* @since 3.00
* @module
*/
@Immutable
abstract class CassiniOrMercator extends UnitaryProjection {
/**
* For cross-version compatibility.
*/
private static final long serialVersionUID = -8816056150503228733L;
/**
* Maximal difference (in radians) from central meridian for enabling assertions. When
* assertions are enabled, projections using spherical formulas are followed by projections
* using the ellipsoidal formulas, and the results are compared. If a distance greater than
* the tolerance level is found, then an {@link AssertionError} will be thrown.
*/
static final double ASSERTION_DOMAIN = 5 * (PI/180);
/**
* Constant needed for the {@link #mlfn} method.
* Setup at construction time.
*/
private final double en0, en1, en2, en3, en4;
/**
* Constants used to calculate {@link #en0}, {@link #en1},
* {@link #en2}, {@link #en3}, {@link #en4}.
*/
private static final double
C00 = 1.0,
C02 = 0.25,
C04 = 0.046875,
C06 = 0.01953125,
C08 = 0.01068115234375,
C22 = 0.75,
C44 = 0.46875,
C46 = 0.01302083333333333333,
C48 = 0.00712076822916666666,
C66 = 0.36458333333333333333,
C68 = 0.00569661458333333333,
C88 = 0.3076171875;
/**
* Constructs a new map projection from the supplied parameters.
*
* @param parameters The parameters of the projection to be created.
*/
CassiniOrMercator(final Parameters parameters) {
super(parameters);
final double excentricitySquared = this.excentricitySquared;
double t;
en0 = C00 - excentricitySquared * (C02 + excentricitySquared *
(C04 + excentricitySquared * (C06 + excentricitySquared * C08)));
en1 = excentricitySquared * (C22 - excentricitySquared *
(C04 + excentricitySquared * (C06 + excentricitySquared * C08)));
en2 = (t = excentricitySquared * excentricitySquared) *
(C44 - excentricitySquared * (C46 + excentricitySquared * C48));
en3 = (t *= excentricitySquared) * (C66 - excentricitySquared * C68);
en4 = t * excentricitySquared * C88;
final double latitudeOfOrigin = toRadians(parameters.latitudeOfOrigin);
final double ml0;
if (excentricitySquared != 0) {
ml0 = mlfn(latitudeOfOrigin, sin(latitudeOfOrigin), cos(latitudeOfOrigin));
} else {
// Above equation simplifies to the latitude of origin in the spherical case.
ml0 = latitudeOfOrigin;
}
/*
* At this point, all parameters have been processed. Now process to their
* validation and the initialization of (de)normalize affine transforms.
*
* Note that in the South Orientated case, the meaning of False Easting (FE) and
* False Northing (FN) are reversed: they are effectively False Westing and False
* Southing. This is the opposite of what we would expect from the parameter names,
* but is documented that way in the EPSG database. In other words while the usual
* Transverse Mercator formulas are:
*
* easting = FE + px
* northing = FN + py
*
* the Transverse Mercator South Orientated Projection formulas are:
*
* westing = (pseudo FE) - px = -FE - px = -easting
* southing = (pseudo FN) - py = -FN - py = -northing
*
* Where the px and py terms are the same in both cases. Because of the sign reversal
* of FE and FN (despite their names) there is actually nothing special to do in this
* method for the South Orientated case.
*/
parameters.validate();
final AffineTransform denormalize = parameters.normalize(false);
denormalize.translate(0, -ml0);
finish();
}
/**
* Calculates the meridian distance. This is the distance along the central
* meridian from the equator to {@code φ}. Accurate to < 1E-5 metres
* when used in conjuction with typical major axis values.
*
* Special cases:
*
* - If φ is 0°, then this method returns 0.
*
*
* @param φ latitude to calculate meridian distance for.
* @param sinφ sin(φ).
* @param cosφ cos(φ).
* @return Meridian distance for the given latitude.
*/
final double mlfn(final double φ, double sinφ, double cosφ) {
cosφ *= sinφ;
sinφ *= sinφ;
return en0*φ - cosφ*(en1 + sinφ*(en2 + sinφ*(en3 + sinφ*en4)));
}
/**
* Gets the derivative of this {@link #mlfn(double, double, double)} method.
*
* @return The derivative at the specified latitude.
*/
final double dmlfn_dφ(final double sinφ2, final double cosφ2) {
return en0 +
en1 * (sinφ2 - cosφ2) + sinφ2*(
en2 * (sinφ2 - 3*cosφ2) + sinφ2*(
en3 * (sinφ2 - 5*cosφ2) + sinφ2*
en4 * ( 1 - 7*cosφ2)));
}
/**
* Calculates the latitude ({@code φ}) from a meridian distance.
* Determines φ to a tenth of {@value #ITERATION_TOLERANCE} radians.
*
* @param delta meridian distance to calculate latitude for.
* @return The latitude of the meridian distance.
* @throws ProjectionException if the iteration does not converge.
*/
final double inv_mlfn(final double delta) throws ProjectionException {
final double k = 1/(1 - excentricitySquared);
double φ = delta;
int i=MAXIMUM_ITERATIONS;
do { // rarely goes over 5 iterations
final double s = sin(φ);
double t = 1 - excentricitySquared * (s*s);
t = (mlfn(φ, s, cos(φ)) - delta) * (t * sqrt(t)) * k;
φ -= t;
if (abs(t) < ITERATION_TOLERANCE/10) {
return φ;
}
} while (--i >= 0);
throw new ProjectionException(Errors.Keys.NO_CONVERGENCE);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy