org.geotoolkit.referencing.operation.projection.Mercator Maven / Gradle / Ivy
/*
* Geotoolkit.org - An Open Source Java GIS Toolkit
* http://www.geotoolkit.org
*
* (C) 1999-2012, Open Source Geospatial Foundation (OSGeo)
* (C) 2009-2012, Geomatys
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* This package contains formulas from the PROJ package of USGS.
* USGS's work is fully acknowledged here. This derived work has
* been relicensed under LGPL with Frank Warmerdam's permission.
*/
package org.geotoolkit.referencing.operation.projection;
import java.awt.geom.AffineTransform;
import net.jcip.annotations.Immutable;
import org.opengis.parameter.ParameterValueGroup;
import org.opengis.parameter.ParameterDescriptorGroup;
import org.opengis.referencing.operation.Matrix;
import org.opengis.referencing.operation.MathTransform2D;
import org.opengis.referencing.operation.TransformException;
import org.geotoolkit.referencing.operation.matrix.Matrix2;
import org.geotoolkit.referencing.operation.provider.Mercator1SP;
import org.geotoolkit.referencing.operation.provider.Mercator2SP;
import org.geotoolkit.referencing.operation.provider.PseudoMercator;
import org.geotoolkit.referencing.operation.provider.MillerCylindrical;
import org.geotoolkit.referencing.operation.provider.UniversalParameters;
import static java.lang.Math.*;
import static java.lang.Double.*;
import static org.geotoolkit.referencing.operation.projection.UnitaryProjection.Parameters.ensureLatitudeInRange;
/**
* Mercator Cylindrical projection (EPSG codes 9804, 9805, 1026, 1024, 9841). See the
* Mercator projection on MathWorld
* for an overview. See any of the following providers for a list of programmatic parameters:
*
*
* - {@link Mercator1SP}
* - {@link Mercator2SP}
* - {@link PseudoMercator}
* - {@link MillerCylindrical}
*
*
* {@section Description}
*
* The parallels and the meridians are straight lines and cross at right angles; this projection
* thus produces rectangular charts. The scale is true along the equator (by default) or along two
* parallels equidistant of the equator (if a scale factor other than 1 is used).
*
* This projection is used to represent areas close to the equator. It is also often used for
* maritime navigation because all the straight lines on the chart are loxodrome lines,
* i.e. a ship following this line would keep a constant azimuth on its compass.
*
* This implementation handles both the 1 and 2 standard parallel cases.
* For {@code Mercator_1SP} (EPSG code 9804), the line of contact is the equator.
* For {@code Mercator_2SP} (EPSG code 9805) lines of contact are symmetrical
* about the equator.
*
* {@section Behavior at poles}
* The projection of 90°N gives {@linkplain Double#POSITIVE_INFINITY positive infinity}.
* The projection of 90°S gives {@linkplain Double#NEGATIVE_INFINITY negative infinity}.
* Projection of a latitude outside the [-90-ε ... 90+ε]° range produces
* {@linkplain Double#NaN NaN}.
*
* {@section References}
*
* - John P. Snyder (Map Projections - A Working Manual,
* U.S. Geological Survey Professional Paper 1395, 1987)
* - "Coordinate Conversions and Transformations including Formulas",
* EPSG Guidance Note Number 7, Version 19.
*
*
* @author André Gosselin (MPO)
* @author Martin Desruisseaux (MPO, IRD, Geomatys)
* @author Rueben Schulz (UBC)
* @author Simon Reynard (Geomatys)
* @author Rémi Maréchal (Geomatys)
* @version 3.20
*
* @see TransverseMercator
* @see ObliqueMercator
*
* @since 1.0
* @module
*/
@Immutable
public class Mercator extends UnitaryProjection {
/**
* For cross-version compatibility.
*/
private static final long serialVersionUID = 2564172914329253286L;
/**
* Creates a Mercator projection from the given parameters. The descriptor argument is
* usually one of the {@code PARAMETERS} constants defined in {@link Mercator1SP} or
* {@link Mercator2SP}, but is not restricted to. If a different descriptor is supplied,
* it is user's responsibility to ensure that it is suitable to a Mercator projection.
*
* @param descriptor Typically one of {@link Mercator1SP#PARAMETERS},
* {@link Mercator2SP#PARAMETERS} or {@link MillerCylindrical#PARAMETERS}.
* @param values The parameter values of the projection to create.
* @return The map projection.
*
* @since 3.00
*/
public static MathTransform2D create(final ParameterDescriptorGroup descriptor,
final ParameterValueGroup values)
{
final Mercator projection;
final Parameters parameters = new Parameters(descriptor, values);
if (parameters.isSpherical()) {
projection = new Spherical(parameters);
} else if (parameters.nameMatches(PseudoMercator.PARAMETERS)) {
projection = new Spherical(parameters, true);
} else {
projection = new Mercator(parameters);
}
return projection.createConcatenatedTransform();
}
/**
* Constructs a new map projection from the supplied parameters.
*
* @param parameters The parameters of the projection to be created.
*/
protected Mercator(final Parameters parameters) {
super(parameters);
final boolean miller = parameters.nameMatches(MillerCylindrical.PARAMETERS);
switch (parameters.standardParallels.length) {
default: {
// A "standard_parallel_2" argument is presents.
throw unknownParameter(UniversalParameters.STANDARD_PARALLEL_2);
}
case 0: {
// No standard parallel. Instead, uses the scale factor explicitly provided.
break;
}
case 1: {
/*
* "scale_factor" is not a parameter in the Mercator_2SP case and is computed from
* the "standard_parallel". The Parameters constructor should have initialized the
* scale factor to 1, but we still use the *= operator rather than = in case some
* user implementation provided an explicit scale factor.
*/
double standardParallel = abs(parameters.standardParallels[0]);
ensureLatitudeInRange(Mercator2SP.STANDARD_PARALLEL, standardParallel, false);
parameters.standardParallels[0] = standardParallel;
standardParallel = toRadians(standardParallel);
if (parameters.isSpherical()) {
parameters.scaleFactor *= cos(standardParallel);
} else {
parameters.scaleFactor *= msfn(sin(standardParallel), cos(standardParallel));
}
break;
}
}
/*
* At this point, all parameters have been processed. Now process to their
* validation and the initialization of (de)normalize affine transforms.
*/
parameters.validate();
final AffineTransform normalize = parameters.normalize(true);
final AffineTransform denormalize = parameters.normalize(false);
/*
* A correction that allows us to employ a latitude of origin that is not
* correspondent to the equator. See Snyder and al. for reference, page 47.
* The scale correction is multiplied with the global scale, which allows
* MapProjection superclass to merge this correction with the scale factor
* in a single multiplication.
*/
final double φ = toRadians(parameters.latitudeOfOrigin);
final double sinφ = sin(φ);
final double scale = cos(φ) / sqrt(1 - excentricitySquared * (sinφ*sinφ));
denormalize.scale(scale, miller ? scale*1.25 : scale);
/*
* Moves the longitude rotation from "normalize" to "denormalize" transform. This is
* possible in the particular case of the Mercator projection because its "transform"
* method passes the longitude unchanged. By keeping the "normalize" affine as simple
* as possible, we increase the chances of efficient concatenation of an inverse with
* a forward projections.
*/
if (Boolean.FALSE.equals(parameters.rollLongitude)) {
final double dx = normalize.getTranslateX();
if (dx != 0 && normalize.getShearX() == 0 && normalize.getShearY() == 0) {
normalize.setTransform(normalize.getScaleX(), 0, 0, normalize.getScaleY(), 0, normalize.getTranslateY());
denormalize.translate(dx, 0);
}
}
if (miller) {
normalize.scale(1, 0.8);
}
finish();
}
/**
* Returns the parameter descriptors for this unitary projection. Note that the returned
* descriptor is about the unitary projection, not the full one. Consequently the current
* implementation returns the descriptor of {@link Mercator1SP} in all cases, because the
* 2SP case is implemented as 1SP with a different scale factor.
*/
@Override
public ParameterDescriptorGroup getParameterDescriptors() {
return Mercator1SP.PARAMETERS;
}
// No need to override getParameterValues() because no additional
// parameter are significant to a unitary Mercator projection.
/**
* Converts the specified (λ,φ) coordinate (units in radians)
* and stores the result in {@code dstPts} (linear distance on a unit sphere). In addition,
* opportunistically computes the projection derivative if {@code derivate} is {@code true}.
*
* @since 3.20 (derived from 3.00)
*/
@Override
public Matrix transform(final double[] srcPts, final int srcOff,
final double[] dstPts, final int dstOff,
final boolean derivate) throws ProjectionException
{
final double λ = rollLongitude(srcPts[srcOff]);
final double φ = srcPts[srcOff + 1];
final double sinφ = sin(φ);
// Projection of zero is zero. However the formulas below have a slight rounding error
// which produce values close to 1E-10, so we will avoid them when y=0. In addition of
// avoiding rounding error, this also preserve the sign (positive vs negative zero).
final double y;
if (sinφ == 0) {
y = φ;
} else {
// See the javadoc of the Spherical inner class for a note
// about why we perform explicit checks for the pole cases.
final double a = abs(φ);
if (a < PI/2) {
y = -log(tsfn(φ, sinφ));
} else {
y = copySign(a <= (PI/2 + ANGLE_TOLERANCE) ? POSITIVE_INFINITY : NaN, φ);
}
}
if (dstPts != null) {
dstPts[dstOff] = λ;
dstPts[dstOff+1] = y;
}
if (!derivate) {
return null;
}
//
// End of map projection. Now compute the derivative.
//
final double cosφ = cos(φ);
final double esinφ = sinφ * excentricity;
final double t = (1 - sinφ) / cosφ;
return new Matrix2(1, 0, 0, 0.5*(t + 1/t) - excentricitySquared*cosφ / (1 - esinφ*esinφ));
}
/**
* Converts a list of coordinate point ordinal values.
*
* {@note We override the super-class method only as an optimization in the special case
* where the target coordinates are written at the same locations than the source
* coordinates. In such case, we can take advantage of the fact that the λ value
* is not modified by the unitary Mercator projection.}
*/
@Override
public void transform(final double[] srcPts, int srcOff,
final double[] dstPts, int dstOff, int numPts)
throws TransformException
{
if (srcPts != dstPts || srcOff != dstOff || rollLongitude()) {
super.transform(srcPts, srcOff, dstPts, dstOff, numPts);
return;
}
dstOff--;
while (--numPts >= 0) {
double y = dstPts[dstOff += 2]; // Same as srcPts[srcOff + 1].
if (y != 0) {
// See the javadoc of the Spherical inner class for a note
// about why we perform explicit checks for the pole cases.
final double a = abs(y);
if (a < PI/2) {
y = -log(tsfn(y, sin(y)));
} else {
y = copySign(a <= (PI/2 + ANGLE_TOLERANCE) ? POSITIVE_INFINITY : NaN, y);
}
dstPts[dstOff] = y;
}
}
}
/**
* Transforms the specified (x,y) coordinates
* and stores the result in {@code dstPts} (angles in radians).
*/
@Override
protected void inverseTransform(final double[] srcPts, final int srcOff,
final double[] dstPts, final int dstOff)
throws ProjectionException
{
final double y = srcPts[srcOff + 1]; // Must be before writing x.
dstPts[dstOff] = unrollLongitude(srcPts[srcOff]); // Must be before writing y.
dstPts[dstOff+1] = cphi2(exp(-y));
}
/**
* Provides the transform equations for the spherical case of the Mercator projection.
*
* Implementation note: this class contains explicit checks for latitude values at
* poles. If floating point arithmetic had infinite precision, those checks would not be
* necessary since the formulas lead naturally to infinite values at poles, which is the
* correct answer. In practice the infinite value emerges by itself at only one pole, and
* the other one produces a high value (approximatively 1E+16). This is because there is
* no accurate representation of PI/2 in base 2, and consequently {@code tan(PI/2)} does
* not returns the infinite value.
*
* The {@code Spherical} formula has the opposite behavior than {@link Mercator} regarding
* which pole returns the infinite value. In {@code Spherical}, this is the South pole. In
* {@code Mercator} (ellipsoidal case), this is the North pole. Using explicit checks allow
* us to enforce the same behavior for the two implementations.
*
* @author Martin Desruisseaux (MPO, IRD, Geomatys)
* @author Rueben Schulz (UBC)
* @version 3.15
*
* @since 2.1
* @module
*/
@Immutable
static final class Spherical extends Mercator {
/**
* For cross-version compatibility.
*/
private static final long serialVersionUID = 2383414176395616561L;
/**
* {@code true} if we are in the "Pseudo Mercator" case.
*/
private final boolean pseudo;
/**
* Constructs a new map projection from the supplied parameters.
*
* @param parameters The parameters of the projection to be created.
*/
protected Spherical(final Parameters parameters) {
this(parameters, false);
}
/**
* Constructs a new map projection from the supplied parameters.
*
* @param parameters The parameters of the projection to be created.
* @param pseudo {@code true} if we are in the "Pseudo Mercator" case.
*/
Spherical(final Parameters parameters, final boolean pseudo) {
super(parameters);
this.pseudo = pseudo;
if (!pseudo) {
parameters.ensureSpherical();
}
}
/**
* Returns {@code true} since this class uses spherical formulas.
*/
@Override
final boolean isSpherical() {
return true;
}
/**
* {@inheritDoc}
*/
@Override
public ParameterDescriptorGroup getParameterDescriptors() {
return pseudo ? PseudoMercator.PARAMETERS : super.getParameterDescriptors();
}
/**
* {@inheritDoc}
*/
@Override
public Matrix transform(final double[] srcPts, final int srcOff,
final double[] dstPts, final int dstOff,
final boolean derivate) throws ProjectionException
{
final double λ = rollLongitude(srcPts[srcOff]);
final double φ = srcPts[srcOff + 1];
// Projection of zero is zero. However the formulas below have a slight rounding error
// which produce values close to 1E-10, so we will avoid them when y=0. In addition of
// avoiding rounding error, this also preserve the sign (positive vs negative zero).
final double y;
if (φ == 0) {
y = φ;
} else {
// See class javadoc for a note about explicit check for poles.
final double a = abs(φ);
if (a < PI/2) {
y = log(tan(PI/4 + 0.5*φ));
} else {
y = copySign(a <= (PI/2 + ANGLE_TOLERANCE) ? POSITIVE_INFINITY : NaN, φ);
}
}
Matrix derivative = null;
if (derivate) {
derivative = new Matrix2(1, 0, 0, 1/cos(φ));
}
// Following part is common to all spherical projections: verify, store and return.
assert pseudo || (Assertions.checkDerivative(derivative, super.transform(srcPts, srcOff, dstPts, dstOff, derivate))
&& Assertions.checkTransform(dstPts, dstOff, λ, y)); // dstPts = result from ellipsoidal formulas.
if (dstPts != null) {
dstPts[dstOff ] = λ;
dstPts[dstOff+1] = y;
}
return derivative;
}
/**
* {@inheritDoc}
*
* {@note This method must be overriden because the Mercator
class
* overrides the UnitaryProjection
implementation.}
*/
@Override
public void transform(final double[] srcPts, int srcOff,
final double[] dstPts, int dstOff, int numPts)
throws TransformException
{
if (srcPts != dstPts || srcOff != dstOff || rollLongitude()) {
super.transform(srcPts, srcOff, dstPts, dstOff, numPts);
return;
}
dstOff--;
while (--numPts >= 0) {
double y = dstPts[dstOff += 2]; // Same as srcPts[srcOff...].
if (y != 0) {
final double a = abs(y);
if (a < PI/2) {
y = log(tan(PI/4 + 0.5*y));
} else {
y = copySign(a <= (PI/2 + ANGLE_TOLERANCE) ? POSITIVE_INFINITY : NaN, y);
}
dstPts[dstOff] = y;
}
}
}
/**
* {@inheritDoc}
*/
@Override
protected void inverseTransform(final double[] srcPts, final int srcOff,
final double[] dstPts, final int dstOff)
throws ProjectionException
{
double x = unrollLongitude(srcPts[srcOff]);
double y = srcPts[srcOff + 1];
y = PI/2 - 2.0*atan(exp(-y));
assert pseudo || checkInverseTransform(srcPts, srcOff, dstPts, dstOff, x, y);
dstPts[dstOff] = x;
dstPts[dstOff + 1] = y;
}
/**
* Computes using ellipsoidal formulas and compare with the
* result from spherical formulas. Used in assertions only.
*/
private boolean checkInverseTransform(final double[] srcPts, final int srcOff,
final double[] dstPts, final int dstOff,
final double λ, final double φ)
throws ProjectionException
{
super.inverseTransform(srcPts, srcOff, dstPts, dstOff);
return Assertions.checkInverseTransform(dstPts, dstOff, λ, φ);
}
}
}