All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.geotoolkit.referencing.operation.projection.Orthographic Maven / Gradle / Ivy

/*
 *    Geotoolkit.org - An Open Source Java GIS Toolkit
 *    http://www.geotoolkit.org
 *
 *    (C) 2000-2012, Open Source Geospatial Foundation (OSGeo)
 *    (C) 2009-2012, Geomatys
 *
 *    This library is free software; you can redistribute it and/or
 *    modify it under the terms of the GNU Lesser General Public
 *    License as published by the Free Software Foundation;
 *    version 2.1 of the License.
 *
 *    This library is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *    Lesser General Public License for more details.
 *
 *    This package contains formulas from the PROJ package of USGS.
 *    USGS's work is fully acknowledged here. This derived work has
 *    been relicensed under LGPL with Frank Warmerdam's permission.
 */
package org.geotoolkit.referencing.operation.projection;

import java.awt.geom.AffineTransform;
import net.jcip.annotations.Immutable;

import org.opengis.parameter.ParameterValueGroup;
import org.opengis.parameter.ParameterDescriptorGroup;
import org.opengis.referencing.operation.Matrix;
import org.opengis.referencing.operation.MathTransform2D;

import org.geotoolkit.resources.Errors;
import org.geotoolkit.util.ComparisonMode;
import org.geotoolkit.referencing.operation.matrix.Matrix2;

import static java.lang.Math.*;
import static org.geotoolkit.internal.InternalUtilities.epsilonEqual;


/**
 * Orthographic projection. See the
 * Orthographic projection on
 * MathWorld for an overview. See any of the following providers for a list of programmatic
 * parameters:
 * 

*

    *
  • {@link org.geotoolkit.referencing.operation.provider.Orthographic}
  • *
* * {@section Description} * This is a perspective azimuthal (planar) projection that is neither conformal nor equal-area. * It resembles a globe and only one hemisphere can be seen at a time, since it is a perspective * projection from infinite distance. While not useful for accurate measurements, this projection * is useful for pictorial views of the world. Only the spherical form is given here. * * {@section References} *
    *
  • Proj-4.4.7 available at www.remotesensing.org/proj.
    * Relevant files are: {@code PJ_ortho.c}, {@code pj_fwd.c} and {@code pj_inv.c}.
  • *
  • John P. Snyder (Map Projections - A Working Manual,
    * U.S. Geological Survey Professional Paper 1395, 1987)
  • *
* * @author Rueben Schulz (UBC) * @author Martin Desruisseaux (Geomatys) * @author Rémi Maréchal (Geomatys) * @version 3.20 * * @since 2.0 * @module */ @Immutable public class Orthographic extends UnitaryProjection { /** * For compatibility with different versions during deserialization. */ private static final long serialVersionUID = 5036668705538661687L; /** * Maximum difference allowed when comparing real numbers. */ private static final double EPSILON = 1E-6; /** * 0 if equatorial, 1 if polar, any other value if oblique. In the equatorial case, * {@link #latitudeOfOrigin} is zero, {@link #sinφ0} is zero and {@link #cosφ0} * is one. */ private final byte type; /** * The latitude of origin, in radians. */ private final double latitudeOfOrigin; /** * The sine of the {@link #latitudeOfOrigin}. */ private final double sinφ0; /** * The cosine of the {@link #latitudeOfOrigin}. */ private final double cosφ0; /** * Creates an Orthographic projection from the given parameters. The descriptor argument is * usually {@link org.geotoolkit.referencing.operation.provider.Orthographic#PARAMETERS}, but * is not restricted to. If a different descriptor is supplied, it is user's responsibility * to ensure that it is suitable to an Orthographic projection. * * @param descriptor Typically {@code Orthographic.PARAMETERS}. * @param values The parameter values of the projection to create. * @return The map projection. * * @since 3.00 */ public static MathTransform2D create(final ParameterDescriptorGroup descriptor, final ParameterValueGroup values) { final Parameters parameters = new Parameters(descriptor, values); final Orthographic projection = new Orthographic(parameters); return projection.createConcatenatedTransform(); } /** * Constructs a new map projection from the supplied parameters. * * @param parameters The parameters of the projection to be created. */ protected Orthographic(final Parameters parameters) { super(parameters); double latitudeOfOrigin = toRadians(parameters.latitudeOfOrigin); boolean north=false, south=false; /* * Detect the special cases (equtorial or polar). In the polar case, we use the * same formulas for the North pole than the ones for the South pole, with only * the sign of y reversed. */ if (abs(abs(latitudeOfOrigin) - PI/2) <= ANGLE_TOLERANCE) { // Polar case. The latitude of origin must be set to a positive value even for the // South case because the "normalize" affine transform will reverse the sign of φ. if (latitudeOfOrigin >= 0) { north = true; } else { south = true; } latitudeOfOrigin = PI/2; type = 1; } else if (latitudeOfOrigin == 0) { type = 0; // Equatorial case } else { type = 2; // Oblique case. } this.latitudeOfOrigin = latitudeOfOrigin; sinφ0 = sin(latitudeOfOrigin); cosφ0 = cos(latitudeOfOrigin); /* * At this point, all parameters have been processed. Now process to their * validation and the initialization of (de)normalize affine transforms. */ if (south) { parameters.normalize(true).scale(1, -1); } parameters.validate(); final AffineTransform denormalize = parameters.normalize(false); if (!parameters.isSpherical()) { /* * In principle the elliptical case is not supported. If nevertheless the user gave * an ellipsoid, use the same Earth radius than the one computed in Equirectangular. */ double p = sin(abs(latitudeOfOrigin)); p = sqrt(1 - excentricitySquared) / (1 - (p*p)*excentricitySquared); denormalize.scale(p, p); } if (north) { denormalize.scale(1, -1); } finish(); } /** * Returns {@code true} since this projection is implemented using spherical formulas. */ @Override boolean isSpherical() { return true; } /** * Returns the parameter descriptors for this unitary projection. Note that * the returned descriptor is about the unitary projection, not the full one. */ @Override public ParameterDescriptorGroup getParameterDescriptors() { return org.geotoolkit.referencing.operation.provider.Orthographic.PARAMETERS; } /** * Converts the specified (λ,φ) coordinate (units in radians) * and stores the result in {@code dstPts} (linear distance on a unit sphere). In addition, * opportunistically computes the projection derivative if {@code derivate} is {@code true}. * * @since 3.20 (derived from 3.00) */ @Override public Matrix transform(final double[] srcPts, final int srcOff, final double[] dstPts, final int dstOff, final boolean derivate) throws ProjectionException { final double λ = rollLongitude(srcPts[srcOff]); final double φ = srcPts[srcOff + 1]; final double cosφ = cos(φ); final double cosλ = cos(λ); final double sinλ = sin(λ); final double threshold, y; switch (type) { default: { // Oblique final double sinφ = sin(φ); threshold = sinφ0*sinφ + cosφ0*cosφ*cosλ; y = cosφ0*sinφ - sinφ0*cosφ*cosλ; break; } case 0: { // Equatorial threshold = cosφ * cosλ; y = sin(φ); break; } case 1: { // Polar (South case, applicable to North because of (de)normalize transforms) threshold = φ; y = cosφ * cosλ; break; } } if (threshold < -EPSILON) { throw new ProjectionException(Errors.Keys.POINT_OUTSIDE_HEMISPHERE); } if (dstPts != null) { dstPts[dstOff ] = cosφ * sinλ; dstPts[dstOff+1] = y; } if (!derivate) { return null; } // // End of map projection. Now compute the derivative. // final double m00, m01, m10, m11; final double sinφ = sin(φ); m00 = cosφ * cosλ; m01 = -sinφ * sinλ; switch (type) { default: { // Oblique m10 = sinφ0 * cosφ * sinλ; m11 = cosφ0 * cosφ + sinφ0*cosλ*sinφ; break; } case 0: { // Equatorial m10 = 0; m11 = cosφ; break; } case 1: { // Polar (South case, applicable to North because of (de)normalize transforms) m10 = -cosφ * sinλ; m11 = -sinφ * cosλ; break; } } return new Matrix2(m00, m01, m10, m11); } /** * Transforms the specified (x,y) coordinates * and stores the result in {@code dstPts} (angles in radians). */ @Override protected void inverseTransform(final double[] srcPts, final int srcOff, final double[] dstPts, final int dstOff) throws ProjectionException { double x = srcPts[srcOff ]; double y = srcPts[srcOff+1]; final double ρ = hypot(x, y); double sinc = ρ; if (sinc > 1) { if (sinc - 1 > ANGLE_TOLERANCE) { throw new ProjectionException(Errors.Keys.POINT_OUTSIDE_HEMISPHERE); } sinc = 1; } double φ; if (ρ <= EPSILON) { φ = latitudeOfOrigin; x = 0; } else { if (type != 1) { final double cosc = sqrt(1 - sinc * sinc); if (type != 0) { // Oblique case φ = (cosc * sinφ0) + (y * sinc * cosφ0 / ρ); x *= sinc * cosφ0; y = (cosc - sinφ0 * φ) * ρ; // equivalent to part of (20-15) } else { // Equatorial case φ = y * sinc / ρ; x *= sinc; y = cosc * ρ; } φ = (abs(φ) >= 1) ? copySign(PI/2, φ) : asin(φ); } else { // South pole case, applicable to North case because of (de)normalize transforms. φ = acos(sinc); // equivalent to asin(cos(c)) over the range [0:1] } x = atan2(x, y); } dstPts[dstOff ] = unrollLongitude(x); dstPts[dstOff+1] = φ; } /** * Compares the given object with this transform for equivalence. */ @Override public boolean equals(final Object object, final ComparisonMode mode) { if (super.equals(object, mode)) { final Orthographic that = (Orthographic) object; return epsilonEqual(latitudeOfOrigin, that.latitudeOfOrigin, mode); // All other fields are derived from the latitude of origin. } return false; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy