Download JAR files tagged by body with all dependencies
pact-jvm-consumer-junit5_2.11 from group au.com.dius (version 3.5.24)
pact-jvm-consumer-junit5
========================
JUnit 5 support for Pact consumer tests
## Dependency
The library is available on maven central using:
* group-id = `au.com.dius`
* artifact-id = `pact-jvm-consumer-junit5_2.12`
* version-id = `3.5.x`
## Usage
### 1. Add the Pact consumer test extension to the test class.
To write Pact consumer tests with JUnit 5, you need to add `@ExtendWith(PactConsumerTestExt)` to your test class. This
replaces the `PactRunner` used for JUnit 4 tests. The rest of the test follows a similar pattern as for JUnit 4 tests.
```java
@ExtendWith(PactConsumerTestExt.class)
class ExampleJavaConsumerPactTest {
```
### 2. create a method annotated with `@Pact` that returns the interactions for the test
For each test (as with JUnit 4), you need to define a method annotated with the `@Pact` annotation that returns the
interactions for the test.
```java
@Pact(provider="test_provider", consumer="test_consumer")
public RequestResponsePact createPact(PactDslWithProvider builder) {
return builder
.given("test state")
.uponReceiving("ExampleJavaConsumerPactTest test interaction")
.path("/")
.method("GET")
.willRespondWith()
.status(200)
.body("{\"responsetest\": true}")
.toPact();
}
```
### 3. Link the mock server with the interactions for the test with `@PactTestFor`
Then the final step is to use the `@PactTestFor` annotation to tell the Pact extension how to setup the Pact test. You
can either put this annotation on the test class, or on the test method. For examples see
[ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) and
[MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy).
The `@PactTestFor` annotation allows you to control the mock server in the same way as the JUnit 4 `PactProviderRule`. It
allows you to set the hostname to bind to (default is `localhost`) and the port (default is to use a random port). You
can also set the Pact specification version to use (default is V3).
```java
@ExtendWith(PactConsumerTestExt.class)
@PactTestFor(providerName = "ArticlesProvider", port = "1234")
public class ExampleJavaConsumerPactTest {
```
**NOTE on the hostname**: The mock server runs in the same JVM as the test, so the only valid values for hostname are:
| hostname | result |
| -------- | ------ |
| `localhost` | binds to the address that localhost points to (normally the loopback adapter) |
| `127.0.0.1` or `::1` | binds to the loopback adapter |
| host name | binds to the default interface that the host machines DNS name resolves to |
| `0.0.0.0` or `::` | binds to the all interfaces on the host machine |
#### Matching the interactions by provider name
If you set the `providerName` on the `@PactTestFor` annotation, then the first method with a `@Pact` annotation with the
same provider name will be used. See [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) for
an example.
#### Matching the interactions by method name
If you set the `pactMethod` on the `@PactTestFor` annotation, then the method with the provided name will be used (it still
needs a `@Pact` annotation). See [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy) for an example.
### Injecting the mock server into the test
You can get the mock server injected into the test method by adding a `MockServer` parameter to the test method.
```java
@Test
void test(MockServer mockServer) {
HttpResponse httpResponse = Request.Get(mockServer.getUrl() + "/articles.json").execute().returnResponse();
assertThat(httpResponse.getStatusLine().getStatusCode(), is(equalTo(200)));
}
```
This helps with getting the base URL of the mock server, especially when a random port is used.
## Unsupported
The current implementation does not support tests with multiple providers. This will be added in a later release.
Group: au.com.dius Artifact: pact-jvm-consumer-junit5_2.11
Show all versions Show documentation Show source
Show all versions Show documentation Show source
1 downloads
Artifact pact-jvm-consumer-junit5_2.11
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 9
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-consumer_2.11, junit-jupiter-api,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 9
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-consumer_2.11, junit-jupiter-api,
There are maybe transitive dependencies!
pact-jvm-consumer-java8_2.11 from group au.com.dius (version 3.5.24)
# pact-jvm-consumer-java8
Provides a Java8 lambda based DSL for use with Junit to build consumer tests.
# A Lambda DSL for Pact
This is an extension for the pact DSL provided by [pact-jvm-consumer](../pact-jvm-consumer). The difference between
the default pact DSL and this lambda DSL is, as the name suggests, the usage of lambdas. The use of lambdas makes the code much cleaner.
## Why a new DSL implementation?
The lambda DSL solves the following two main issues. Both are visible in the following code sample:
```java
new PactDslJsonArray()
.array() # open an array
.stringValue("a1") # choose the method that is valid for arrays
.stringValue("a2") # choose the method that is valid for arrays
.closeArray() # close the array
.array() # open an array
.numberValue(1) # choose the method that is valid for arrays
.numberValue(2) # choose the method that is valid for arrays
.closeArray() # close the array
.array() # open an array
.object() # now we work with an object
.stringValue("foo", "Foo") # choose the method that is valid for objects
.closeObject() # close the object and we're back in the array
.closeArray() # close the array
```
### The existing DSL is quite error-prone
Methods may only be called in certain states. For example `object()` may only be called when you're currently working on an array whereas `object(name)`
is only allowed to be called when working on an object. But both of the methods are available. You'll find out at runtime if you're using the correct method.
Finally, the need for opening and closing objects and arrays makes usage cumbersome.
The lambda DSL has no ambiguous methods and there's no need to close objects and arrays as all the work on such an object is wrapped in a lamda call.
### The existing DSL is hard to read
When formatting your source code with an IDE the code becomes hard to read as there's no indentation possible. Of course, you could do it by hand but we want auto formatting!
Auto formatting works great for the new DSL!
```java
array.object((o) -> {
o.stringValue("foo", "Foo"); # an attribute
o.stringValue("bar", "Bar"); # an attribute
o.object("tar", (tarObject) -> { # an attribute with a nested object
tarObject.stringValue("a", "A"); # attribute of the nested object
tarObject.stringValue("b", "B"); # attribute of the nested object
})
});
```
## Installation
### Maven
```
<dependency>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-consumer-java8</artifactId>
<version>${pact.version}</version>
</dependency>
```
## Usage
Start with a static import of `LambdaDsl`. This class contains factory methods for the lambda dsl extension.
When you come accross the `body()` method of `PactDslWithProvider` builder start using the new extensions.
The call to `LambdaDsl` replaces the call to instance `new PactDslJsonArray()` and `new PactDslJsonBody()` of the pact library.
```java
io.pactfoundation.consumer.dsl.LambdaDsl.*
```
### Response body as json array
```java
import static io.pactfoundation.consumer.dsl.LambdaDsl.newJsonArray;
...
PactDslWithProvider builder = ...
builder.given("some state")
.uponReceiving("a request")
.path("/my-app/my-service")
.method("GET")
.willRespondWith()
.status(200)
.body(newJsonArray((a) -> {
a.stringValue("a1");
a.stringValue("a2");
}).build());
```
### Response body as json object
```java
import static io.pactfoundation.consumer.dsl.LambdaDsl.newJsonBody;
...
PactDslWithProvider builder = ...
builder.given("some state")
.uponReceiving("a request")
.path("/my-app/my-service")
.method("GET")
.willRespondWith()
.status(200)
.body(newJsonBody((o) -> {
o.stringValue("foo", "Foo");
o.stringValue("bar", "Bar");
}).build());
```
### Examples
#### Simple Json object
When creating simple json structures the difference between the two approaches isn't big.
##### JSON
```json
{
"bar": "Bar",
"foo": "Foo"
}
```
##### Pact DSL
```java
new PactDslJsonBody()
.stringValue("foo", "Foo")
.stringValue("bar", "Bar")
```
##### Lambda DSL
```java
newJsonBody((o) -> {
o.stringValue("foo", "Foo");
o.stringValue("bar", "Bar");
}).build()
```
#### An array of arrays
When we come to more complex constructs with arrays and nested objects the beauty of lambdas become visible!
##### JSON
```json
[
["a1", "a2"],
[1, 2],
[{"foo": "Foo"}]
]
```
##### Pact DSL
```java
new PactDslJsonArray()
.array()
.stringValue("a1")
.stringValue("a2")
.closeArray()
.array()
.numberValue(1)
.numberValue(2)
.closeArray()
.array()
.object()
.stringValue("foo", "Foo")
.closeObject()
.closeArray()
```
##### Lambda DSL
```java
newJsonArray((rootArray) -> {
rootArray.array((a) -> a.stringValue("a1").stringValue("a2"));
rootArray.array((a) -> a.numberValue(1).numberValue(2));
rootArray.array((a) -> a.object((o) -> o.stringValue("foo", "Foo"));
}).build()
```
Group: au.com.dius Artifact: pact-jvm-consumer-java8_2.11
Show all versions Show documentation Show source
Show all versions Show documentation Show source
3 downloads
Artifact pact-jvm-consumer-java8_2.11
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 9
Dependencies kotlin-stdlib-jre8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-compiler, scala-logging_2.11, pact-jvm-consumer-junit_2.11,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 9
Dependencies kotlin-stdlib-jre8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-compiler, scala-logging_2.11, pact-jvm-consumer-junit_2.11,
There are maybe transitive dependencies!
java8 from group au.com.dius.pact.consumer (version 4.1.43)
# pact-jvm-consumer-java8
Provides a Java8 lambda based DSL for use with Junit to build consumer tests.
## Dependency
The library is available on maven central using:
* group-id = `au.com.dius.pact.consumer`
* artifact-id = `java8`
* version-id = `4.1.x`
# A Lambda DSL for Pact
This is an extension for the pact DSL provided by [consumer](../consumer). The difference between
the default pact DSL and this lambda DSL is, as the name suggests, the usage of lambdas. The use of lambdas makes the code much cleaner.
## Why a new DSL implementation?
The lambda DSL solves the following two main issues. Both are visible in the following code sample:
```java
new PactDslJsonArray()
.array() # open an array
.stringValue("a1") # choose the method that is valid for arrays
.stringValue("a2") # choose the method that is valid for arrays
.closeArray() # close the array
.array() # open an array
.numberValue(1) # choose the method that is valid for arrays
.numberValue(2) # choose the method that is valid for arrays
.closeArray() # close the array
.array() # open an array
.object() # now we work with an object
.stringValue("foo", "Foo") # choose the method that is valid for objects
.closeObject() # close the object and we're back in the array
.closeArray() # close the array
```
### The existing DSL is quite error-prone
Methods may only be called in certain states. For example `object()` may only be called when you're currently working on an array whereas `object(name)`
is only allowed to be called when working on an object. But both of the methods are available. You'll find out at runtime if you're using the correct method.
Finally, the need for opening and closing objects and arrays makes usage cumbersome.
The lambda DSL has no ambiguous methods and there's no need to close objects and arrays as all the work on such an object is wrapped in a lamda call.
### The existing DSL is hard to read
When formatting your source code with an IDE the code becomes hard to read as there's no indentation possible. Of course, you could do it by hand but we want auto formatting!
Auto formatting works great for the new DSL!
```java
array.object((o) -> {
o.stringValue("foo", "Foo"); # an attribute
o.stringValue("bar", "Bar"); # an attribute
o.object("tar", (tarObject) -> { # an attribute with a nested object
tarObject.stringValue("a", "A"); # attribute of the nested object
tarObject.stringValue("b", "B"); # attribute of the nested object
})
});
```
## Installation
### Maven
```
<dependency>
<groupId>au.com.dius.pact.consumer</groupId>
<artifactId>java8</artifactId>
<version>${pact.version}</version>
</dependency>
```
## Usage
Start with a static import of `LambdaDsl`. This class contains factory methods for the lambda dsl extension.
When you come accross the `body()` method of `PactDslWithProvider` builder start using the new extensions.
The call to `LambdaDsl` replaces the call to instance `new PactDslJsonArray()` and `new PactDslJsonBody()` of the pact library.
```java
io.pactfoundation.consumer.dsl.LambdaDsl.*
```
### Response body as json array
```java
import static io.pactfoundation.consumer.dsl.LambdaDsl.newJsonArray;
...
PactDslWithProvider builder = ...
builder.given("some state")
.uponReceiving("a request")
.path("/my-app/my-service")
.method("GET")
.willRespondWith()
.status(200)
.body(newJsonArray((a) -> {
a.stringValue("a1");
a.stringValue("a2");
}).build());
```
### Response body as json object
```java
import static io.pactfoundation.consumer.dsl.LambdaDsl.newJsonBody;
...
PactDslWithProvider builder = ...
builder.given("some state")
.uponReceiving("a request")
.path("/my-app/my-service")
.method("GET")
.willRespondWith()
.status(200)
.body(newJsonBody((o) -> {
o.stringValue("foo", "Foo");
o.stringValue("bar", "Bar");
}).build());
```
### Examples
#### Simple Json object
When creating simple json structures the difference between the two approaches isn't big.
##### JSON
```json
{
"bar": "Bar",
"foo": "Foo"
}
```
##### Pact DSL
```java
new PactDslJsonBody()
.stringValue("foo", "Foo")
.stringValue("bar", "Bar")
```
##### Lambda DSL
```java
newJsonBody((o) -> {
o.stringValue("foo", "Foo");
o.stringValue("bar", "Bar");
}).build();
```
#### An array of arrays
When we come to more complex constructs with arrays and nested objects the beauty of lambdas become visible!
##### JSON
```json
[
["a1", "a2"],
[1, 2],
[{"foo": "Foo"}]
]
```
##### Pact DSL
```java
new PactDslJsonArray()
.array()
.stringValue("a1")
.stringValue("a2")
.closeArray()
.array()
.numberValue(1)
.numberValue(2)
.closeArray()
.array()
.object()
.stringValue("foo", "Foo")
.closeObject()
.closeArray();
```
##### Lambda DSL
```java
newJsonArray((rootArray) -> {
rootArray.array((a) -> a.stringValue("a1").stringValue("a2"));
rootArray.array((a) -> a.numberValue(1).numberValue(2));
rootArray.array((a) -> a.object((o) -> o.stringValue("foo", "Foo")));
}).build();
```
##### Kotlin Lambda DSL
```kotlin
newJsonArray {
newArray {
stringValue("a1")
stringValue("a2")
}
newArray {
numberValue(1)
numberValue(2)
}
newArray {
newObject { stringValue("foo", "Foo") }
}
}
```
# Test Analytics
We are tracking anonymous analytics to gather important usage statistics like JVM version
and operating system. To disable tracking, set the 'pact_do_not_track' system property or environment
variable to 'true'.
0 downloads
Artifact java8
Group au.com.dius.pact.consumer
Version 4.1.43
Last update 12. July 2024
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 1
Dependencies consumer,
There are maybe transitive dependencies!
Group au.com.dius.pact.consumer
Version 4.1.43
Last update 12. July 2024
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 1
Dependencies consumer,
There are maybe transitive dependencies!
pact-jvm-consumer-junit5_2.12 from group au.com.dius (version 3.6.15)
pact-jvm-consumer-junit5
========================
JUnit 5 support for Pact consumer tests
## Dependency
The library is available on maven central using:
* group-id = `au.com.dius`
* artifact-id = `pact-jvm-consumer-junit5_2.12`
* version-id = `3.6.x`
## Usage
### 1. Add the Pact consumer test extension to the test class.
To write Pact consumer tests with JUnit 5, you need to add `@ExtendWith(PactConsumerTestExt)` to your test class. This
replaces the `PactRunner` used for JUnit 4 tests. The rest of the test follows a similar pattern as for JUnit 4 tests.
```java
@ExtendWith(PactConsumerTestExt.class)
class ExampleJavaConsumerPactTest {
```
### 2. create a method annotated with `@Pact` that returns the interactions for the test
For each test (as with JUnit 4), you need to define a method annotated with the `@Pact` annotation that returns the
interactions for the test.
```java
@Pact(provider="ArticlesProvider", consumer="test_consumer")
public RequestResponsePact createPact(PactDslWithProvider builder) {
return builder
.given("test state")
.uponReceiving("ExampleJavaConsumerPactTest test interaction")
.path("/articles.json")
.method("GET")
.willRespondWith()
.status(200)
.body("{\"responsetest\": true}")
.toPact();
}
```
### 3. Link the mock server with the interactions for the test with `@PactTestFor`
Then the final step is to use the `@PactTestFor` annotation to tell the Pact extension how to setup the Pact test. You
can either put this annotation on the test class, or on the test method. For examples see
[ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) and
[MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy).
The `@PactTestFor` annotation allows you to control the mock server in the same way as the JUnit 4 `PactProviderRule`. It
allows you to set the hostname to bind to (default is `localhost`) and the port (default is to use a random port). You
can also set the Pact specification version to use (default is V3).
```java
@ExtendWith(PactConsumerTestExt.class)
@PactTestFor(providerName = "ArticlesProvider")
public class ExampleJavaConsumerPactTest {
```
**NOTE on the hostname**: The mock server runs in the same JVM as the test, so the only valid values for hostname are:
| hostname | result |
| -------- | ------ |
| `localhost` | binds to the address that localhost points to (normally the loopback adapter) |
| `127.0.0.1` or `::1` | binds to the loopback adapter |
| host name | binds to the default interface that the host machines DNS name resolves to |
| `0.0.0.0` or `::` | binds to the all interfaces on the host machine |
#### Matching the interactions by provider name
If you set the `providerName` on the `@PactTestFor` annotation, then the first method with a `@Pact` annotation with the
same provider name will be used. See [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) for
an example.
#### Matching the interactions by method name
If you set the `pactMethod` on the `@PactTestFor` annotation, then the method with the provided name will be used (it still
needs a `@Pact` annotation). See [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy) for an example.
### Injecting the mock server into the test
You can get the mock server injected into the test method by adding a `MockServer` parameter to the test method.
```java
@Test
void test(MockServer mockServer) throws IOException {
HttpResponse httpResponse = Request.Get(mockServer.getUrl() + "/articles.json").execute().returnResponse();
assertThat(httpResponse.getStatusLine().getStatusCode(), is(equalTo(200)));
}
```
This helps with getting the base URL of the mock server, especially when a random port is used.
## Changing the directory pact files are written to
By default, pact files are written to `target/pacts` (or `build/pacts` if you use Gradle), but this can be overwritten with the `pact.rootDir` system property.
This property needs to be set on the test JVM as most build tools will fork a new JVM to run the tests.
For Gradle, add this to your build.gradle:
```groovy
test {
systemProperties['pact.rootDir'] = "$buildDir/custom-pacts-directory"
}
```
For maven, use the systemPropertyVariables configuration:
```xml
<project>
[...]
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18</version>
<configuration>
<systemPropertyVariables>
<pact.rootDir>some/other/directory</pact.rootDir>
<buildDirectory>${project.build.directory}</buildDirectory>
[...]
</systemPropertyVariables>
</configuration>
</plugin>
</plugins>
</build>
[...]
</project>
```
For SBT:
```scala
fork in Test := true,
javaOptions in Test := Seq("-Dpact.rootDir=some/other/directory")
```
### Using `@PactFolder` annotation [3.6.2+]
You can override the directory the pacts are written in a test by adding the `@PactFolder` annotation to the test
class.
## Forcing pact files to be overwritten (3.6.5+)
By default, when the pact file is written, it will be merged with any existing pact file. To force the file to be
overwritten, set the Java system property `pact.writer.overwrite` to `true`.
## Unsupported
The current implementation does not support tests with multiple providers. This will be added in a later release.
# Having values injected from provider state callbacks (3.6.11+)
You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers,
bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example
of where this would be useful is API calls that require an ID which would be auto-generated by the database on the
provider side, so there is no way to know what the ID would be beforehand.
The following DSL methods all you to set an expression that will be parsed with the values returned from the provider states:
For JSON bodies, use `valueFromProviderState`.<br/>
For headers, use `headerFromProviderState`.<br/>
For query parameters, use `queryParameterFromProviderState`.<br/>
For paths, use `pathFromProviderState`.
For example, assume that an API call is made to get the details of a user by ID. A provider state can be defined that
specifies that the user must be exist, but the ID will be created when the user is created. So we can then define an
expression for the path where the ID will be replaced with the value returned from the provider state callback.
```java
.pathFromProviderState("/api/users/${id}", "/api/users/100")
```
You can also just use the key instead of an expression:
```java
.valueFromProviderState('userId', 'userId', 100) // will look value using userId as the key
```
Group: au.com.dius Artifact: pact-jvm-consumer-junit5_2.12
Show all versions Show documentation Show source
Show all versions Show documentation Show source
3 downloads
Artifact pact-jvm-consumer-junit5_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 2
Dependencies pact-jvm-consumer_2.12, junit-jupiter-api,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 2
Dependencies pact-jvm-consumer_2.12, junit-jupiter-api,
There are maybe transitive dependencies!
pact-jvm-consumer-junit5 from group au.com.dius (version 4.0.10)
pact-jvm-consumer-junit5
========================
JUnit 5 support for Pact consumer tests
## Dependency
The library is available on maven central using:
* group-id = `au.com.dius`
* artifact-id = `pact-jvm-consumer-junit5`
* version-id = `4.0.x`
## Usage
### 1. Add the Pact consumer test extension to the test class.
To write Pact consumer tests with JUnit 5, you need to add `@ExtendWith(PactConsumerTestExt)` to your test class. This
replaces the `PactRunner` used for JUnit 4 tests. The rest of the test follows a similar pattern as for JUnit 4 tests.
```java
@ExtendWith(PactConsumerTestExt.class)
class ExampleJavaConsumerPactTest {
```
### 2. create a method annotated with `@Pact` that returns the interactions for the test
For each test (as with JUnit 4), you need to define a method annotated with the `@Pact` annotation that returns the
interactions for the test.
```java
@Pact(provider="ArticlesProvider", consumer="test_consumer")
public RequestResponsePact createPact(PactDslWithProvider builder) {
return builder
.given("test state")
.uponReceiving("ExampleJavaConsumerPactTest test interaction")
.path("/articles.json")
.method("GET")
.willRespondWith()
.status(200)
.body("{\"responsetest\": true}")
.toPact();
}
```
### 3. Link the mock server with the interactions for the test with `@PactTestFor`
Then the final step is to use the `@PactTestFor` annotation to tell the Pact extension how to setup the Pact test. You
can either put this annotation on the test class, or on the test method. For examples see
[ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) and
[MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy).
The `@PactTestFor` annotation allows you to control the mock server in the same way as the JUnit 4 `PactProviderRule`. It
allows you to set the hostname to bind to (default is `localhost`) and the port (default is to use a random port). You
can also set the Pact specification version to use (default is V3).
```java
@ExtendWith(PactConsumerTestExt.class)
@PactTestFor(providerName = "ArticlesProvider")
public class ExampleJavaConsumerPactTest {
```
**NOTE on the hostname**: The mock server runs in the same JVM as the test, so the only valid values for hostname are:
| hostname | result |
| -------- | ------ |
| `localhost` | binds to the address that localhost points to (normally the loopback adapter) |
| `127.0.0.1` or `::1` | binds to the loopback adapter |
| host name | binds to the default interface that the host machines DNS name resolves to |
| `0.0.0.0` or `::` | binds to the all interfaces on the host machine |
#### Matching the interactions by provider name
If you set the `providerName` on the `@PactTestFor` annotation, then the first method with a `@Pact` annotation with the
same provider name will be used. See [ArticlesTest](src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java) for
an example.
#### Matching the interactions by method name
If you set the `pactMethod` on the `@PactTestFor` annotation, then the method with the provided name will be used (it still
needs a `@Pact` annotation). See [MultiTest](src/test/groovy/au/com/dius/pact/consumer/junit5/MultiTest.groovy) for an example.
### Injecting the mock server into the test
You can get the mock server injected into the test method by adding a `MockServer` parameter to the test method.
```java
@Test
void test(MockServer mockServer) throws IOException {
HttpResponse httpResponse = Request.Get(mockServer.getUrl() + "/articles.json").execute().returnResponse();
assertThat(httpResponse.getStatusLine().getStatusCode(), is(equalTo(200)));
}
```
This helps with getting the base URL of the mock server, especially when a random port is used.
## Changing the directory pact files are written to
By default, pact files are written to `target/pacts` (or `build/pacts` if you use Gradle), but this can be overwritten with the `pact.rootDir` system property.
This property needs to be set on the test JVM as most build tools will fork a new JVM to run the tests.
For Gradle, add this to your build.gradle:
```groovy
test {
systemProperties['pact.rootDir'] = "$buildDir/custom-pacts-directory"
}
```
For maven, use the systemPropertyVariables configuration:
```xml
<project>
[...]
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18</version>
<configuration>
<systemPropertyVariables>
<pact.rootDir>some/other/directory</pact.rootDir>
<buildDirectory>${project.build.directory}</buildDirectory>
[...]
</systemPropertyVariables>
</configuration>
</plugin>
</plugins>
</build>
[...]
</project>
```
For SBT:
```scala
fork in Test := true,
javaOptions in Test := Seq("-Dpact.rootDir=some/other/directory")
```
### Using `@PactFolder` annotation
You can override the directory the pacts are written in a test by adding the `@PactFolder` annotation to the test
class.
## Forcing pact files to be overwritten (3.6.5+)
By default, when the pact file is written, it will be merged with any existing pact file. To force the file to be
overwritten, set the Java system property `pact.writer.overwrite` to `true`.
## Unsupported
The current implementation does not support tests with multiple providers. This will be added in a later release.
# Having values injected from provider state callbacks (3.6.11+)
You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers,
bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example
of where this would be useful is API calls that require an ID which would be auto-generated by the database on the
provider side, so there is no way to know what the ID would be beforehand.
The following DSL methods all you to set an expression that will be parsed with the values returned from the provider states:
For JSON bodies, use `valueFromProviderState`.<br/>
For headers, use `headerFromProviderState`.<br/>
For query parameters, use `queryParameterFromProviderState`.<br/>
For paths, use `pathFromProviderState`.
For example, assume that an API call is made to get the details of a user by ID. A provider state can be defined that
specifies that the user must be exist, but the ID will be created when the user is created. So we can then define an
expression for the path where the ID will be replaced with the value returned from the provider state callback.
```java
.pathFromProviderState("/api/users/${id}", "/api/users/100")
```
You can also just use the key instead of an expression:
```java
.valueFromProviderState('userId', 'userId', 100) // will look value using userId as the key
```
Group: au.com.dius Artifact: pact-jvm-consumer-junit5
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact pact-jvm-consumer-junit5
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 2
Dependencies junit-jupiter-api, pact-jvm-consumer,
There are maybe transitive dependencies!
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 2
Dependencies junit-jupiter-api, pact-jvm-consumer,
There are maybe transitive dependencies!
pact-jvm-provider_2.10 from group au.com.dius (version 2.4.20)
Pact provider
=============
sub project of https://github.com/DiUS/pact-jvm
The pact provider is responsible for verifying that an API provider adheres to a number of pacts authored by its clients
This library provides the basic tools required to automate the process, and should be usable on its own in many instances.
Framework and build tool specific bindings will be provided in separate libraries that build on top of this core functionality.
### Running Pacts
Main takes 2 arguments:
The first is the root folder of your pact files
(all .json files in root and subfolders are assumed to be pacts)
The second is the location of your pact config json file.
### Pact config
The pact config is a simple mapping of provider names to endpoint url's
paths will be appended to endpoint url's when interactions are attempted
for an example see: https://github.com/DiUS/pact-jvm/blob/master/pact-jvm-provider/src/test/resources/pact-config.json
### Provider State
Before each interaction is executed, the provider under test will have the opportunity to enter a state.
Generally the state maps to a set of fixture data for mocking out services that the provider is a consumer of (they will have their own pacts)
The pact framework will instruct the test server to enter that state by sending:
POST "${config.stateChangeUrl.url}/setup" { "state" : "${interaction.stateName}" }
### An example of running provider verification with junit
This example uses java, junit and hamcrest matchers to run the provider verification.
As the provider service is a DropWizard application, it uses the DropwizardAppRule to startup the service before running any test.
Warning: It only grabs the first interaction from the pact file with the consumer, where there could be many. (This could possibly be solved with a parameterized test)
```java
public class PactJVMProviderJUnitTest {
@ClassRule
public static TestRule startServiceRule = new DropwizardAppRule<DropwizardAppConfig>(DropwizardApp.class, "config.yml");
private static ProviderInfo serviceProvider;
private static Pact testConsumerPact;
@BeforeClass
public static void setupProvider() {
serviceProvider = new ProviderInfo("Dropwizard App");
serviceProvider.setProtocol("http");
serviceProvider.setHost("localhost");
serviceProvider.setPort(8080);
serviceProvider.setPath("/");
ConsumerInfo consumer = new ConsumerInfo();
consumer.setName("test_consumer");
consumer.setPactFile(new File("target/pacts/ping_client-ping_service.json"));
// serviceProvider.getConsumers().add(consumer);
testConsumerPact = (Pact) new PactReader().loadPact(consumer.getPactFile());
}
@Test
@SuppressWarnings("unchecked")
public void runConsumerPacts() {
//grab the first interaction from the pact with consumer
List<Interaction> interactions = scala.collection.JavaConversions.seqAsJavaList(testConsumerPact.interactions());
Interaction interaction1 = interactions.get(0);
//setup any provider state
//setup the client and interaction to fire against the provider
ProviderClient client = new ProviderClient();
client.setProvider(serviceProvider);
client.setRequest(interaction1.request());
Map<String, Object> clientResponse = (Map<String, Object>) client.makeRequest();
Map<String, Object> result = (Map<String, Object>) ResponseComparison.compareResponse(interaction1.response(),
clientResponse, (int) clientResponse.get("statusCode"), (Map) clientResponse.get("headers"), (String) clientResponse.get("data"));
//assert all good
assertThat(result.get("method"), is(true)); // method type matches
Map headers = (Map) result.get("headers"); //headers match
headers.forEach( (k, v) ->
assertThat(format("Header: [%s] does not match", k), v, org.hamcrest.Matchers.equalTo(true))
);
assertThat((Collection<Object>)((Map)result.get("body")).values(), org.hamcrest.Matchers.hasSize(0)); // empty list of body mismatches
}
}
```
### An example of running provider verification with spock
This example uses groovy and spock to run the provider verification.
Again the provider service is a DropWizard application, and is using the DropwizardAppRule to startup the service.
This example runs all interactions using spocks Unroll feature
```groovy
class PactJVMProviderSpockSpec extends Specification {
@ClassRule @Shared
TestRule startServiceRule = new DropwizardAppRule<DropwizardAppConfig>(DropwizardApp.class, "config.yml");
@Shared
ProviderInfo serviceProvider
@Shared
Pact testConsumerPact
def setupSpec() {
serviceProvider = new ProviderInfo("Dropwizard App")
serviceProvider.protocol = "http"
serviceProvider.host = "localhost"
serviceProvider.port = 8080;
serviceProvider.path = "/"
def consumer = serviceProvider.hasPactWith("ping_consumer", {
pactFile = new File('target/pacts/ping_client-ping_service.json')
})
testConsumerPact = (Pact) new PactReader().loadPact(consumer.getPactFile());
}
def cleanup() {
//cleanup provider state
//ie. db.truncateAllTables()
}
def cleanupSpec() {
//cleanup provider
}
@Unroll
def "Provider Pact - With Consumer"() {
given:
//setup provider state
// ie. db.setupRecords()
// serviceProvider.requestFilter = { req ->
// req.addHeader('Authorization', token)
// }
when:
ProviderClient client = new ProviderClient(provider: serviceProvider, request: interaction.request())
Map clientResponse = (Map) client.makeRequest()
Map result = (Map) ResponseComparison.compareResponse(interaction.response(),
clientResponse, clientResponse.statusCode, clientResponse.headers, clientResponse.data)
then:
// method matches
result.method == true
// headers all match, spock needs the size checked before
// asserting each result
if (result.headers.size() > 0) {
result.headers.each() { k, v ->
assert v == true
}
}
// empty list of body mismatches
result.body.size() == 0
where:
interaction << scala.collection.JavaConversions.seqAsJavaList(testConsumerPact.interactions())
}
}
```
2 downloads
Artifact pact-jvm-provider_2.10
Group au.com.dius
Version 2.4.20
Last update 14. April 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 13
Dependencies scala-library, diffutils, httpclient, commons-io, pact-jvm-matchers_2.10, scala-compiler, scalatest_2.10, groovy-all, jansi, reflections, http-builder, slf4j-api, pact-jvm-model_2.10,
There are maybe transitive dependencies!
Group au.com.dius
Version 2.4.20
Last update 14. April 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 13
Dependencies scala-library, diffutils, httpclient, commons-io, pact-jvm-matchers_2.10, scala-compiler, scalatest_2.10, groovy-all, jansi, reflections, http-builder, slf4j-api, pact-jvm-model_2.10,
There are maybe transitive dependencies!
pact-jvm-provider-lein_2.12 from group au.com.dius (version 3.6.15)
# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+]
Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all
configured pacts against your provider.
## To Use It
### 1. Add the plugin to your project plugins, preferably in it's own profile.
```clojure
:profiles {
:pact {
:plugins [[au.com.dius/pact-jvm-provider-lein_2.11 "3.2.11" :exclusions [commons-logging]]]
:dependencies [[ch.qos.logback/logback-core "1.1.3"]
[ch.qos.logback/logback-classic "1.1.3"]
[org.apache.httpcomponents/httpclient "4.4.1"]]
}}}
```
### 2. Define the pacts between your consumers and providers
You define all the providers and consumers within the `:pact` configuration element of your project.
```clojure
:pact {
:service-providers {
; You can define as many as you need, but each must have a unique name
:provider1 {
; All the provider properties are optional, and have sensible defaults (shown below)
:protocol "http"
:host "localhost"
:port 8080
:path "/"
:has-pact-with {
; Again, you can define as many consumers for each provider as you need, but each must have a unique name
:consumer1 {
; pact file can be either a path or an URL
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
### 3. Execute `lein with-profile pact pact-verify`
You will have to have your provider running for this to pass.
## Enabling insecure SSL
For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting
`:insecure true` on the provider.
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:insecure true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
## Specifying a custom trust store
For environments that are running their own certificate chains:
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:trust-store "relative/path/to/trustStore.jks"
:trust-store-password "changeme"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
`:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`.
NOTE: The hostname will still be verified against the certificate.
## Modifying the requests before they are sent
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would
be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be
set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest
object as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
; function that adds an Authorization header to each request
:request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...")
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
__*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
## Modifying the HTTP Client Used
The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`).
This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`.
The function will receive the provider info as a parameter.
## Turning off URL decoding of the paths in the pact file [version 3.3.3+]
By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this
behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`.
__*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are
correctly encoded. The verifier will not be able to make a request with an invalid encoded path.
## Plugin Properties
The following plugin options can be specified on the command line:
|Property|Description|
|--------|-----------|
|:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors|
|:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]|
|:pact.filter.consumers|Comma seperated list of consumer names to verify|
|:pact.filter.description|Only verify interactions whose description match the provided regular expression|
|:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state|
|:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]|
|:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'|
Example, to run verification only for a particular consumer:
```
$ lein with-profile pact pact-verify :pact.filter.consumers=:consumer2
```
## Provider States
For each provider you can specify a state change URL to use to switch the state of the provider. This URL will
receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body`
controls if the state is passed in the request body or as a query parameter.
These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given.
```clojure
:pact {
:service-providers {
:provider1 {
:state-change-url "http://localhost:8080/tasks/pactStateChange"
:state-change-uses-body false ; defaults to true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as
JSON in the body of the request. If it is set to false, it will passed as a query parameter.
As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before
it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made.
#### Returning values that can be injected (3.6.11+)
You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers,
bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example
of where this would be useful is API calls that require an ID which would be auto-generated by the database on the
provider side, so there is no way to know what the ID would be beforehand.
There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/${id}'
for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will
be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body.
## Filtering the interactions that are verified
You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`.
Adding `:pact.filter.consumers=:consumer1,:consumer2` to the command line will only run the pact files for those
consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions
whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that
has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a
provider state.
## Starting and shutting down your provider
For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks
together. So, by creating a `start-app` and `terminate-app` alias, you could so something like:
$ lein with-profile pact do start-app, pact-verify, terminate-app
However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the
start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task`
and `:terminate-provider-task` on the provider.
```clojure
:aliases {"start-app" ^{:doc "Starts the app"}
["tasks to start app ..."] ; insert tasks to start the app here
"terminate-app" ^{:doc "Kills the app"}
["tasks to terminate app ..."] ; insert tasks to stop the app here
}
:pact {
:service-providers {
:provider1 {
:start-provider-task "start-app"
:terminate-provider-task "terminate-app"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Then you can just run:
$ lein with-profile pact pact-verify
and the `start-app` and `terminate-app` tasks will run before and after the provider verification.
## Specifying the provider hostname at runtime [3.0.4+]
If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or
AWS instance), you can give an anonymous function as the provider host that returns the host name. The function
will receive the provider information as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
:host #(calculate-host-name %)
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Group: au.com.dius Artifact: pact-jvm-provider-lein_2.12
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact pact-jvm-provider-lein_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies pact-jvm-provider_2.12, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies pact-jvm-provider_2.12, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!
pact-jvm-provider-lein from group au.com.dius (version 4.0.10)
# Leiningen plugin to verify a provider
Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all
configured pacts against your provider.
## To Use It
### 1. Add the plugin to your project plugins, preferably in it's own profile.
```clojure
:profiles {
:pact {
:plugins [[au.com.dius/pact-jvm-provider-lein "4.0.0" :exclusions [commons-logging]]]
:dependencies [[ch.qos.logback/logback-core "1.1.3"]
[ch.qos.logback/logback-classic "1.1.3"]
[org.apache.httpcomponents/httpclient "4.4.1"]]
}}}
```
### 2. Define the pacts between your consumers and providers
You define all the providers and consumers within the `:pact` configuration element of your project.
```clojure
:pact {
:service-providers {
; You can define as many as you need, but each must have a unique name
:provider1 {
; All the provider properties are optional, and have sensible defaults (shown below)
:protocol "http"
:host "localhost"
:port 8080
:path "/"
:has-pact-with {
; Again, you can define as many consumers for each provider as you need, but each must have a unique name
:consumer1 {
; pact file can be either a path or an URL
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
### 3. Execute `lein with-profile pact pact-verify`
You will have to have your provider running for this to pass.
## Enabling insecure SSL
For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting
`:insecure true` on the provider.
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:insecure true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
## Specifying a custom trust store
For environments that are running their own certificate chains:
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:trust-store "relative/path/to/trustStore.jks"
:trust-store-password "changeme"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
`:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`.
NOTE: The hostname will still be verified against the certificate.
## Modifying the requests before they are sent
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would
be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be
set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest
object as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
; function that adds an Authorization header to each request
:request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...")
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
__*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
## Modifying the HTTP Client Used
The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`).
This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`.
The function will receive the provider info as a parameter.
## Turning off URL decoding of the paths in the pact file
By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this
behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`.
__*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are
correctly encoded. The verifier will not be able to make a request with an invalid encoded path.
## Plugin Properties
The following plugin options can be specified on the command line:
|Property|Description|
|--------|-----------|
|:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors|
|:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]|
|:pact.filter.consumers|Comma seperated list of consumer names to verify|
|:pact.filter.description|Only verify interactions whose description match the provided regular expression|
|:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state|
|:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]|
|:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'|
Example, to run verification only for a particular consumer:
```
$ lein with-profile pact pact-verify :pact.filter.consumers=consumer2
```
## Provider States
For each provider you can specify a state change URL to use to switch the state of the provider. This URL will
receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body`
controls if the state is passed in the request body or as a query parameter.
These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given.
```clojure
:pact {
:service-providers {
:provider1 {
:state-change-url "http://localhost:8080/tasks/pactStateChange"
:state-change-uses-body false ; defaults to true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as
JSON in the body of the request. If it is set to false, it will passed as a query parameter.
As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before
it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made.
#### Returning values that can be injected (3.6.11+)
You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers,
bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example
of where this would be useful is API calls that require an ID which would be auto-generated by the database on the
provider side, so there is no way to know what the ID would be beforehand.
There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/${id}'
for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will
be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body.
## Filtering the interactions that are verified
You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`.
Adding `:pact.filter.consumers=consumer1,consumer2` to the command line will only run the pact files for those
consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions
whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that
has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a
provider state.
## Starting and shutting down your provider
For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks
together. So, by creating a `start-app` and `terminate-app` alias, you could so something like:
$ lein with-profile pact do start-app, pact-verify, terminate-app
However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the
start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task`
and `:terminate-provider-task` on the provider.
```clojure
:aliases {"start-app" ^{:doc "Starts the app"}
["tasks to start app ..."] ; insert tasks to start the app here
"terminate-app" ^{:doc "Kills the app"}
["tasks to terminate app ..."] ; insert tasks to stop the app here
}
:pact {
:service-providers {
:provider1 {
:start-provider-task "start-app"
:terminate-provider-task "terminate-app"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Then you can just run:
$ lein with-profile pact pact-verify
and the `start-app` and `terminate-app` tasks will run before and after the provider verification.
## Specifying the provider hostname at runtime
If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or
AWS instance), you can give an anonymous function as the provider host that returns the host name. The function
will receive the provider information as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
:host #(calculate-host-name %)
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
0 downloads
Artifact pact-jvm-provider-lein
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 10
Dependencies pact-jvm-provider, clojure, core.match, leiningen-core, maven-aether-provider, aether-connector-file, aether-connector-wagon, httpclient, jansi, groovy,
There are maybe transitive dependencies!
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 10
Dependencies pact-jvm-provider, clojure, core.match, leiningen-core, maven-aether-provider, aether-connector-file, aether-connector-wagon, httpclient, jansi, groovy,
There are maybe transitive dependencies!
pact-jvm-provider-lein_2.11 from group au.com.dius (version 3.5.24)
# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+]
Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all
configured pacts against your provider.
## To Use It
### 1. Add the plugin to your project plugins, preferably in it's own profile.
```clojure
:profiles {
:pact {
:plugins [[au.com.dius/pact-jvm-provider-lein_2.11 "3.2.11" :exclusions [commons-logging]]]
:dependencies [[ch.qos.logback/logback-core "1.1.3"]
[ch.qos.logback/logback-classic "1.1.3"]
[org.apache.httpcomponents/httpclient "4.4.1"]]
}}}
```
### 2. Define the pacts between your consumers and providers
You define all the providers and consumers within the `:pact` configuration element of your project.
```clojure
:pact {
:service-providers {
; You can define as many as you need, but each must have a unique name
:provider1 {
; All the provider properties are optional, and have sensible defaults (shown below)
:protocol "http"
:host "localhost"
:port 8080
:path "/"
:has-pact-with {
; Again, you can define as many consumers for each provider as you need, but each must have a unique name
:consumer1 {
; pact file can be either a path or an URL
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
### 3. Execute `lein with-profile pact pact-verify`
You will have to have your provider running for this to pass.
## Enabling insecure SSL
For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting
`:insecure true` on the provider.
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:insecure true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
## Specifying a custom trust store
For environments that are running their own certificate chains:
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:trust-store "relative/path/to/trustStore.jks"
:trust-store-password "changeme"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
`:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`.
NOTE: The hostname will still be verified against the certificate.
## Modifying the requests before they are sent
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would
be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be
set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest
object as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
; function that adds an Authorization header to each request
:request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...")
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
__*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
## Modifying the HTTP Client Used
The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`).
This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`.
The function will receive the provider info as a parameter.
## Turning off URL decoding of the paths in the pact file [version 3.3.3+]
By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this
behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`.
__*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are
correctly encoded. The verifier will not be able to make a request with an invalid encoded path.
## Plugin Properties
The following plugin options can be specified on the command line:
|Property|Description|
|--------|-----------|
|:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors|
|:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]|
|:pact.filter.consumers|Comma seperated list of consumer names to verify|
|:pact.filter.description|Only verify interactions whose description match the provided regular expression|
|:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state|
Example, to run verification only for a particular consumer:
```
$ lein with-profile pact pact-verify :pact.filter.consumers=consumer2
```
## Provider States
For each provider you can specify a state change URL to use to switch the state of the provider. This URL will
receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body`
controls if the state is passed in the request body or as a query parameter.
These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given.
```clojure
:pact {
:service-providers {
:provider1 {
:state-change-url "http://localhost:8080/tasks/pactStateChange"
:state-change-uses-body false ; defaults to true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as
JSON in the body of the request. If it is set to false, it will passed as a query parameter.
As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before
it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made.
## Filtering the interactions that are verified
You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`.
Adding `:pact.filter.consumers=consumer1,consumer2` to the command line will only run the pact files for those
consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions
whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that
has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a
provider state.
## Starting and shutting down your provider
For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks
together. So, by creating a `start-app` and `terminate-app` alias, you could so something like:
$ lein with-profile pact do start-app, pact-verify, terminate-app
However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the
start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task`
and `:terminate-provider-task` on the provider.
```clojure
:aliases {"start-app" ^{:doc "Starts the app"}
["tasks to start app ..."] ; insert tasks to start the app here
"terminate-app" ^{:doc "Kills the app"}
["tasks to terminate app ..."] ; insert tasks to stop the app here
}
:pact {
:service-providers {
:provider1 {
:start-provider-task "start-app"
:terminate-provider-task "terminate-app"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Then you can just run:
$ lein with-profile pact pact-verify
and the `start-app` and `terminate-app` tasks will run before and after the provider verification.
## Specifying the provider hostname at runtime [3.0.4+]
If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or
AWS instance), you can give an anonymous function as the provider host that returns the host name. The function
will receive the provider information as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
:host #(calculate-host-name %)
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Group: au.com.dius Artifact: pact-jvm-provider-lein_2.11
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact pact-jvm-provider-lein_2.11
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 16
Dependencies kotlin-stdlib-jre8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-compiler, scala-logging_2.11, pact-jvm-provider_2.11, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 16
Dependencies kotlin-stdlib-jre8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-compiler, scala-logging_2.11, pact-jvm-provider_2.11, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!
pact-jvm-provider-lein_2.10 from group au.com.dius (version 2.4.20)
# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+]
Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all
configured pacts against your provider.
## To Use It
### 1. Add the plugin to your project plugins, preferably in it's own profile.
```clojure
:profiles {
:pact {
:plugins [[au.com.dius/pact-jvm-provider-lein_2.11 "3.0.3" :exclusions [commons-logging]]]
:dependencies [[ch.qos.logback/logback-core "1.1.3"]
[ch.qos.logback/logback-classic "1.1.3"]
[org.apache.httpcomponents/httpclient "4.4.1"]]
}}}
```
### 2. Define the pacts between your consumers and providers
You define all the providers and consumers within the `:pact` configuration element of your project.
```clojure
:pact {
:service-providers {
; You can define as many as you need, but each must have a unique name
:provider1 {
; All the provider properties are optional, and have sensible defaults (shown below)
:protocol "http"
:host "localhost"
:port 8080
:path "/"
:has-pact-with {
; Again, you can define as many consumers for each provider as you need, but each must have a unique name
:consumer1 {
; pact file can be either a path or an URL
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
### 3. Execute `lein with-profile pact pact-verify`
You will have to have your provider running for this to pass.
## Enabling insecure SSL
For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting
`:insecure true` on the provider.
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:insecure true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
## Specifying a custom trust store
For environments that are running their own certificate chains:
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:trust-store "relative/path/to/trustStore.jks"
:trust-store-password "changeme"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
`:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`.
NOTE: The hostname will still be verified against the certificate.
## Modifying the requests before they are sent
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would
be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be
set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest
object as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
; function that adds an Authorization header to each request
:request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...")
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
__*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
## Modifying the HTTP Client Used
The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`).
This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`.
The function will receive the provider info as a parameter.
## Plugin Properties
The following plugin options can be specified on the command line:
|Property|Description|
|--------|-----------|
|:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors|
|:pact.filter.consumers|Comma seperated list of consumer names to verify|
|:pact.filter.description|Only verify interactions whose description match the provided regular expression|
|:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state|
Example, to run verification only for a particular consumer:
```
$ lein with-profile pact pact-verify :pact.filter.consumers=consumer2
```
## Provider States
For each provider you can specify a state change URL to use to switch the state of the provider. This URL will
receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body`
controls if the state is passed in the request body or as a query parameter.
These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given.
```clojure
:pact {
:service-providers {
:provider1 {
:state-change-url "http://localhost:8080/tasks/pactStateChange"
:state-change-uses-body false ; defaults to true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as
JSON in the body of the request. If it is set to false, it will passed as a query parameter.
As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before
it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made.
## Filtering the interactions that are verified
You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`.
Adding `:pact.filter.consumers=consumer1,consumer2` to the command line will only run the pact files for those
consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions
whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that
has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a
provider state.
## Starting and shutting down your provider
For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks
together. So, by creating a `start-app` and `terminate-app` alias, you could so something like:
$ lein with-profile pact do start-app, pact-verify, terminate-app
However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the
start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task`
and `:terminate-provider-task` on the provider.
```clojure
:aliases {"start-app" ^{:doc "Starts the app"}
["tasks to start app ..."] ; insert tasks to start the app here
"terminate-app" ^{:doc "Kills the app"}
["tasks to terminate app ..."] ; insert tasks to stop the app here
}
:pact {
:service-providers {
:provider1 {
:start-provider-task "start-app"
:terminate-provider-task "terminate-app"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Then you can just run:
$ lein with-profile pact pact-verify
and the `start-app` and `terminate-app` tasks will run before and after the provider verification.
## Specifying the provider hostname at runtime [3.0.4+]
If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or
AWS instance), you can give an anonymous function as the provider host that returns the host name. The function
will receive the provider information as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
:host #(calculate-host-name %)
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Group: au.com.dius Artifact: pact-jvm-provider-lein_2.10
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact pact-jvm-provider-lein_2.10
Group au.com.dius
Version 2.4.20
Last update 14. April 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 10
Dependencies scala-library, httpclient, leiningen-core, scala-compiler, pact-jvm-provider_2.10, core.match, clojure, slf4j-api, logback-core, logback-classic,
There are maybe transitive dependencies!
Group au.com.dius
Version 2.4.20
Last update 14. April 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 10
Dependencies scala-library, httpclient, leiningen-core, scala-compiler, pact-jvm-provider_2.10, core.match, clojure, slf4j-api, logback-core, logback-classic,
There are maybe transitive dependencies!
Page 14 from 16 (items total 160)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy