![JAR search and dependency download from the Maven repository](/logo.png)
javadoc.com.google.common.math.BigIntegerMath.html Maven / Gradle / Ivy
The newest version!
BigIntegerMath (Guava: Google Core Libraries for Java 11.0.1 API)
Overview
Package
Class
Use
Tree
Deprecated
Index
Help
PREV CLASS
NEXT CLASS
FRAMES
NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD
DETAIL: FIELD | CONSTR | METHOD
com.google.common.math
Class BigIntegerMath
java.lang.Object
com.google.common.math.BigIntegerMath
@Beta
public final class BigIntegerMath
- extends Object
A class for arithmetic on values of type BigInteger
.
The implementations of many methods in this class are based on material from Henry S. Warren, Jr.'s Hacker's Delight, (Addison Wesley, 2002).
Similar functionality for int
and for long
can be found in
IntMath
and LongMath
respectively.
- Since:
- 11.0
- Author:
- Louis Wasserman
Method Summary | |
---|---|
static BigInteger |
binomial(int n,
int k)
Returns n choose k , also known as the binomial coefficient of n and
k , that is, n! / (k! (n - k)!) . |
static BigInteger |
divide(BigInteger p,
BigInteger q,
RoundingMode mode)
Returns the result of dividing p by q , rounding using the specified
RoundingMode . |
static BigInteger |
factorial(int n)
Returns n! , that is, the product of the first n positive
integers, or 1 if n == 0 . |
static boolean |
isPowerOfTwo(BigInteger x)
Returns true if x represents a power of two. |
static int |
log10(BigInteger x,
RoundingMode mode)
Returns the base-10 logarithm of x , rounded according to the specified rounding mode. |
static int |
log2(BigInteger x,
RoundingMode mode)
Returns the base-2 logarithm of x , rounded according to the specified rounding mode. |
static BigInteger |
sqrt(BigInteger x,
RoundingMode mode)
Returns the square root of x , rounded with the specified rounding mode. |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Method Detail |
---|
isPowerOfTwo
public static boolean isPowerOfTwo(BigInteger x)
- Returns
true
ifx
represents a power of two.
log2
public static int log2(BigInteger x, RoundingMode mode)
- Returns the base-2 logarithm of
x
, rounded according to the specified rounding mode.- Throws:
IllegalArgumentException
- ifx <= 0
ArithmeticException
- ifmode
isRoundingMode.UNNECESSARY
andx
is not a power of two
log10
public static int log10(BigInteger x, RoundingMode mode)
- Returns the base-10 logarithm of
x
, rounded according to the specified rounding mode.- Throws:
IllegalArgumentException
- ifx <= 0
ArithmeticException
- ifmode
isRoundingMode.UNNECESSARY
andx
is not a power of ten
sqrt
public static BigInteger sqrt(BigInteger x, RoundingMode mode)
- Returns the square root of
x
, rounded with the specified rounding mode.- Throws:
IllegalArgumentException
- ifx < 0
ArithmeticException
- ifmode
isRoundingMode.UNNECESSARY
andsqrt(x)
is not an integer
divide
public static BigInteger divide(BigInteger p, BigInteger q, RoundingMode mode)
- Returns the result of dividing
p
byq
, rounding using the specifiedRoundingMode
.- Throws:
ArithmeticException
- ifq == 0
, or ifmode == UNNECESSARY
anda
is not an integer multiple ofb
factorial
public static BigInteger factorial(int n)
- Returns
n!
, that is, the product of the firstn
positive integers, or1
ifn == 0
.Warning: the result takes O(n log n) space, so use cautiously.
This uses an efficient binary recursive algorithm to compute the factorial with balanced multiplies. It also removes all the 2s from the intermediate products (shifting them back in at the end).
- Throws:
IllegalArgumentException
- ifn < 0
binomial
public static BigInteger binomial(int n, int k)
- Returns
n
choosek
, also known as the binomial coefficient ofn
andk
, that is,n! / (k! (n - k)!)
.Warning: the result can take as much as O(k log n) space.
- Throws:
IllegalArgumentException
- ifn < 0
,k < 0
, ork > n
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright © 2010-2012. All Rights Reserved.
© 2015 - 2025 Weber Informatics LLC | Privacy Policy